Spaces:
Sleeping
Sleeping
Update app.py
Browse filesUpdated to use vLLM and improved how the models output is parsed
app.py
CHANGED
|
@@ -1,114 +1,334 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
from
|
| 4 |
import spaces
|
| 5 |
|
| 6 |
-
class
|
| 7 |
def __init__(self, model_path="WeiboAI/VibeThinker-1.5B"):
|
| 8 |
self.model_path = model_path
|
| 9 |
-
print("Loading model... This may take a minute.")
|
| 10 |
|
| 11 |
-
self.model =
|
| 12 |
-
self.model_path,
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
trust_remote_code=True
|
| 17 |
)
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
| 23 |
|
| 24 |
-
print(f"Model loaded successfully!")
|
| 25 |
-
print(f"Using device: {self.model.device}")
|
| 26 |
-
if torch.cuda.is_available():
|
| 27 |
-
print(f"CUDA device: {torch.cuda.get_device_name(0)}")
|
| 28 |
-
|
| 29 |
-
@spaces.GPU # This decorator allocates GPU when function is called (for ZeroGPU spaces)
|
| 30 |
-
def infer_text(self, prompt, temperature=0.6, max_tokens=40960, top_p=0.95):
|
| 31 |
-
"""
|
| 32 |
-
Generate response for a given prompt
|
| 33 |
-
|
| 34 |
-
Args:
|
| 35 |
-
prompt: The input question (preferably in English)
|
| 36 |
-
temperature: Controls randomness (0.6 or 1.0 recommended)
|
| 37 |
-
max_tokens: Maximum tokens to generate
|
| 38 |
-
top_p: Nucleus sampling parameter
|
| 39 |
-
"""
|
| 40 |
messages = [
|
| 41 |
{"role": "user", "content": prompt}
|
| 42 |
]
|
| 43 |
|
| 44 |
-
|
| 45 |
-
messages,
|
| 46 |
-
tokenize=False,
|
| 47 |
-
add_generation_prompt=True
|
| 48 |
-
)
|
| 49 |
-
|
| 50 |
-
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device)
|
| 51 |
-
|
| 52 |
-
generation_config = dict(
|
| 53 |
-
max_new_tokens=max_tokens,
|
| 54 |
-
do_sample=True,
|
| 55 |
temperature=temperature,
|
|
|
|
| 56 |
top_p=top_p,
|
| 57 |
-
top_k
|
| 58 |
)
|
| 59 |
|
| 60 |
-
print(f"Generating
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
generation_config=GenerationConfig(**generation_config)
|
| 65 |
-
)
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
|
| 77 |
# Initialize model
|
| 78 |
-
print("Initializing VibeThinker-1.5B...")
|
| 79 |
-
model =
|
| 80 |
|
| 81 |
# Create Gradio interface
|
| 82 |
def generate_response(prompt, temperature, max_tokens, top_p):
|
| 83 |
if not prompt.strip():
|
| 84 |
-
return "Please enter a question
|
| 85 |
|
| 86 |
try:
|
| 87 |
-
|
|
|
|
| 88 |
prompt=prompt,
|
| 89 |
temperature=temperature,
|
| 90 |
max_tokens=max_tokens,
|
| 91 |
top_p=top_p
|
| 92 |
)
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
except Exception as e:
|
| 95 |
-
return f"
|
| 96 |
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
# Gradio UI
|
| 99 |
-
with gr.Blocks(title="VibeThinker-1.5B
|
| 100 |
gr.Markdown("""
|
| 101 |
-
# π§ VibeThinker-1.5B: Reasoning
|
| 102 |
|
| 103 |
-
**Optimized
|
| 104 |
|
| 105 |
-
**
|
| 106 |
-
|
|
|
|
|
|
|
| 107 |
|
| 108 |
-
|
| 109 |
-
- "Solve: Find all solutions to x^3 - 3x^2 + 4 = 0"
|
| 110 |
-
- "Write a Python function to find the longest palindromic substring in O(n^2) time"
|
| 111 |
-
- "Prove that the sum of angles in a triangle equals 180 degrees"
|
| 112 |
|
| 113 |
[GitHub](https://github.com/WeiboAI/VibeThinker) | [HuggingFace Model](https://huggingface.co/WeiboAI/VibeThinker-1.5B) | [Paper](https://huggingface.co/papers/2511.06221)
|
| 114 |
""")
|
|
@@ -117,11 +337,11 @@ with gr.Blocks(title="VibeThinker-1.5B Math & Code Reasoning") as demo:
|
|
| 117 |
with gr.Column(scale=1):
|
| 118 |
prompt_input = gr.Textbox(
|
| 119 |
label="Your Question",
|
| 120 |
-
placeholder="
|
| 121 |
-
lines=
|
| 122 |
)
|
| 123 |
|
| 124 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 125 |
temperature_slider = gr.Slider(
|
| 126 |
minimum=0.1,
|
| 127 |
maximum=1.5,
|
|
@@ -135,7 +355,7 @@ with gr.Blocks(title="VibeThinker-1.5B Math & Code Reasoning") as demo:
|
|
| 135 |
maximum=40960,
|
| 136 |
value=8192,
|
| 137 |
step=512,
|
| 138 |
-
label="Max Tokens
|
| 139 |
)
|
| 140 |
|
| 141 |
top_p_slider = gr.Slider(
|
|
@@ -146,53 +366,55 @@ with gr.Blocks(title="VibeThinker-1.5B Math & Code Reasoning") as demo:
|
|
| 146 |
label="Top P"
|
| 147 |
)
|
| 148 |
|
| 149 |
-
submit_btn = gr.Button("π Generate Solution", variant="primary")
|
| 150 |
-
clear_btn = gr.Button("ποΈ Clear")
|
| 151 |
|
| 152 |
with gr.Column(scale=1):
|
| 153 |
-
|
| 154 |
label="Model Response",
|
| 155 |
-
|
| 156 |
-
show_copy_button=True
|
| 157 |
)
|
| 158 |
|
| 159 |
# Example questions
|
| 160 |
gr.Examples(
|
| 161 |
examples=[
|
| 162 |
-
["
|
| 163 |
-
["
|
| 164 |
-
["
|
| 165 |
-
["
|
| 166 |
],
|
| 167 |
inputs=[prompt_input, temperature_slider, max_tokens_slider, top_p_slider],
|
| 168 |
-
label="Example Problems"
|
| 169 |
)
|
| 170 |
|
| 171 |
# Event handlers
|
| 172 |
submit_btn.click(
|
| 173 |
fn=generate_response,
|
| 174 |
inputs=[prompt_input, temperature_slider, max_tokens_slider, top_p_slider],
|
| 175 |
-
outputs=
|
| 176 |
)
|
| 177 |
|
| 178 |
clear_btn.click(
|
| 179 |
-
fn=lambda: ("", ""),
|
| 180 |
inputs=[],
|
| 181 |
-
outputs=[prompt_input,
|
| 182 |
)
|
| 183 |
|
| 184 |
gr.Markdown("""
|
| 185 |
---
|
| 186 |
-
### π
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
-
**
|
| 193 |
""")
|
| 194 |
|
| 195 |
# Launch the app
|
| 196 |
if __name__ == "__main__":
|
| 197 |
-
demo.queue()
|
| 198 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import re
|
| 3 |
+
from vllm import LLM, SamplingParams
|
| 4 |
import spaces
|
| 5 |
|
| 6 |
+
class VibeThinkerVLLM:
|
| 7 |
def __init__(self, model_path="WeiboAI/VibeThinker-1.5B"):
|
| 8 |
self.model_path = model_path
|
| 9 |
+
print("Loading model with vLLM... This may take a minute.")
|
| 10 |
|
| 11 |
+
self.model = LLM(
|
| 12 |
+
model=self.model_path,
|
| 13 |
+
dtype="bfloat16",
|
| 14 |
+
gpu_memory_utilization=0.9,
|
| 15 |
+
max_model_len=40960, # Support full context length
|
| 16 |
trust_remote_code=True
|
| 17 |
)
|
| 18 |
|
| 19 |
+
print(f"Model loaded successfully with vLLM!")
|
| 20 |
+
|
| 21 |
+
@spaces.GPU
|
| 22 |
+
def infer_text(self, prompt, temperature=0.6, max_tokens=8192, top_p=0.95):
|
| 23 |
+
"""Generate response with vLLM for faster inference"""
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
messages = [
|
| 26 |
{"role": "user", "content": prompt}
|
| 27 |
]
|
| 28 |
|
| 29 |
+
sampling_params = SamplingParams(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
temperature=temperature,
|
| 31 |
+
max_tokens=max_tokens,
|
| 32 |
top_p=top_p,
|
| 33 |
+
top_k=-1, # Disable top_k sampling
|
| 34 |
)
|
| 35 |
|
| 36 |
+
print(f"Generating with vLLM (temp={temperature}, max_tokens={max_tokens})...")
|
| 37 |
|
| 38 |
+
outputs = self.model.chat(messages, sampling_params=sampling_params)
|
| 39 |
+
response = outputs[0].outputs[0].text
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
return response
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def parse_model_output(text):
|
| 45 |
+
"""
|
| 46 |
+
Parse model output into structured components:
|
| 47 |
+
- Thinking sections (within <think> tags)
|
| 48 |
+
- Regular text (chat messages)
|
| 49 |
+
- Code blocks (within ``` or <code> tags)
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
sections = []
|
| 53 |
+
|
| 54 |
+
# Split by <think> tags
|
| 55 |
+
think_pattern = r'<think>(.*?)</think>'
|
| 56 |
+
code_pattern = r'```(\w+)?\n(.*?)```'
|
| 57 |
+
|
| 58 |
+
# Extract thinking sections
|
| 59 |
+
think_matches = list(re.finditer(think_pattern, text, re.DOTALL))
|
| 60 |
+
|
| 61 |
+
# Track positions
|
| 62 |
+
last_pos = 0
|
| 63 |
+
|
| 64 |
+
for match in think_matches:
|
| 65 |
+
# Add text before thinking section
|
| 66 |
+
before_text = text[last_pos:match.start()].strip()
|
| 67 |
+
if before_text:
|
| 68 |
+
# Check for code blocks in this text
|
| 69 |
+
code_blocks = list(re.finditer(code_pattern, before_text, re.DOTALL))
|
| 70 |
+
|
| 71 |
+
if code_blocks:
|
| 72 |
+
# Process text with code blocks
|
| 73 |
+
text_pos = 0
|
| 74 |
+
for code_match in code_blocks:
|
| 75 |
+
# Add text before code
|
| 76 |
+
pre_code_text = before_text[text_pos:code_match.start()].strip()
|
| 77 |
+
if pre_code_text:
|
| 78 |
+
sections.append({
|
| 79 |
+
'type': 'text',
|
| 80 |
+
'content': pre_code_text
|
| 81 |
+
})
|
| 82 |
+
|
| 83 |
+
# Add code block
|
| 84 |
+
language = code_match.group(1) or 'plaintext'
|
| 85 |
+
code_content = code_match.group(2).strip()
|
| 86 |
+
sections.append({
|
| 87 |
+
'type': 'code',
|
| 88 |
+
'language': language,
|
| 89 |
+
'content': code_content
|
| 90 |
+
})
|
| 91 |
+
|
| 92 |
+
text_pos = code_match.end()
|
| 93 |
+
|
| 94 |
+
# Add remaining text after last code block
|
| 95 |
+
remaining_text = before_text[text_pos:].strip()
|
| 96 |
+
if remaining_text:
|
| 97 |
+
sections.append({
|
| 98 |
+
'type': 'text',
|
| 99 |
+
'content': remaining_text
|
| 100 |
+
})
|
| 101 |
+
else:
|
| 102 |
+
sections.append({
|
| 103 |
+
'type': 'text',
|
| 104 |
+
'content': before_text
|
| 105 |
+
})
|
| 106 |
|
| 107 |
+
# Add thinking section
|
| 108 |
+
think_content = match.group(1).strip()
|
| 109 |
+
sections.append({
|
| 110 |
+
'type': 'thinking',
|
| 111 |
+
'content': think_content
|
| 112 |
+
})
|
| 113 |
|
| 114 |
+
last_pos = match.end()
|
| 115 |
+
|
| 116 |
+
# Add remaining text after last thinking section
|
| 117 |
+
remaining = text[last_pos:].strip()
|
| 118 |
+
if remaining:
|
| 119 |
+
# Check for code blocks
|
| 120 |
+
code_blocks = list(re.finditer(code_pattern, remaining, re.DOTALL))
|
| 121 |
+
|
| 122 |
+
if code_blocks:
|
| 123 |
+
text_pos = 0
|
| 124 |
+
for code_match in code_blocks:
|
| 125 |
+
pre_code_text = remaining[text_pos:code_match.start()].strip()
|
| 126 |
+
if pre_code_text:
|
| 127 |
+
sections.append({
|
| 128 |
+
'type': 'text',
|
| 129 |
+
'content': pre_code_text
|
| 130 |
+
})
|
| 131 |
+
|
| 132 |
+
language = code_match.group(1) or 'plaintext'
|
| 133 |
+
code_content = code_match.group(2).strip()
|
| 134 |
+
sections.append({
|
| 135 |
+
'type': 'code',
|
| 136 |
+
'language': language,
|
| 137 |
+
'content': code_content
|
| 138 |
+
})
|
| 139 |
+
|
| 140 |
+
text_pos = code_match.end()
|
| 141 |
+
|
| 142 |
+
remaining_text = remaining[text_pos:].strip()
|
| 143 |
+
if remaining_text:
|
| 144 |
+
sections.append({
|
| 145 |
+
'type': 'text',
|
| 146 |
+
'content': remaining_text
|
| 147 |
+
})
|
| 148 |
+
else:
|
| 149 |
+
sections.append({
|
| 150 |
+
'type': 'text',
|
| 151 |
+
'content': remaining
|
| 152 |
+
})
|
| 153 |
+
|
| 154 |
+
return sections
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def format_output_for_display(sections):
|
| 158 |
+
"""
|
| 159 |
+
Format parsed sections into a rich HTML display with:
|
| 160 |
+
- Collapsible thinking sections
|
| 161 |
+
- Syntax-highlighted code blocks
|
| 162 |
+
- Clean text rendering
|
| 163 |
+
"""
|
| 164 |
+
|
| 165 |
+
html_parts = []
|
| 166 |
+
|
| 167 |
+
for i, section in enumerate(sections):
|
| 168 |
+
if section['type'] == 'thinking':
|
| 169 |
+
# Collapsible thinking section
|
| 170 |
+
html_parts.append(f"""
|
| 171 |
+
<details class="thinking-section" style="margin: 15px 0; border: 2px solid #f39c12; border-radius: 8px; background-color: #fff9e6;">
|
| 172 |
+
<summary style="padding: 12px; cursor: pointer; font-weight: bold; color: #d68910; user-select: none;">
|
| 173 |
+
π€ Thinking Process (Click to expand)
|
| 174 |
+
</summary>
|
| 175 |
+
<div style="padding: 15px; border-top: 1px solid #f39c12; background-color: #fffef7; white-space: pre-wrap; font-family: 'Courier New', monospace; font-size: 13px; color: #333; line-height: 1.6;">
|
| 176 |
+
{section['content']}
|
| 177 |
+
</div>
|
| 178 |
+
</details>
|
| 179 |
+
""")
|
| 180 |
+
|
| 181 |
+
elif section['type'] == 'code':
|
| 182 |
+
# Code block with copy/download buttons
|
| 183 |
+
code_id = f"code-{i}"
|
| 184 |
+
html_parts.append(f"""
|
| 185 |
+
<details class="code-section" open style="margin: 15px 0; border: 2px solid #3498db; border-radius: 8px; background-color: #e8f4fd;">
|
| 186 |
+
<summary style="padding: 12px; cursor: pointer; font-weight: bold; color: #2874a6; user-select: none;">
|
| 187 |
+
π» Code ({section['language']}) - Click to collapse
|
| 188 |
+
</summary>
|
| 189 |
+
<div style="position: relative; padding: 0;">
|
| 190 |
+
<div style="position: absolute; top: 10px; right: 10px; z-index: 10;">
|
| 191 |
+
<button onclick="copyCode('{code_id}')" style="padding: 6px 12px; margin-right: 5px; background-color: #3498db; color: white; border: none; border-radius: 4px; cursor: pointer; font-size: 12px;">
|
| 192 |
+
π Copy
|
| 193 |
+
</button>
|
| 194 |
+
<button onclick="downloadCode('{code_id}', '{section['language']}')" style="padding: 6px 12px; background-color: #27ae60; color: white; border: none; border-radius: 4px; cursor: pointer; font-size: 12px;">
|
| 195 |
+
β¬οΈ Download
|
| 196 |
+
</button>
|
| 197 |
+
</div>
|
| 198 |
+
<pre id="{code_id}" style="margin: 0; padding: 40px 15px 15px 15px; background-color: #f8f9fa; border-top: 1px solid #3498db; overflow-x: auto; font-family: 'Courier New', monospace; font-size: 13px; line-height: 1.5;"><code class="language-{section['language']}">{section['content']}</code></pre>
|
| 199 |
+
</div>
|
| 200 |
+
</details>
|
| 201 |
+
""")
|
| 202 |
+
|
| 203 |
+
else: # text
|
| 204 |
+
# Regular text output
|
| 205 |
+
html_parts.append(f"""
|
| 206 |
+
<div class="text-section" style="margin: 15px 0; padding: 15px; border: 1px solid #bdc3c7; border-radius: 8px; background-color: #ffffff; white-space: pre-wrap; font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, 'Helvetica Neue', Arial, sans-serif; font-size: 14px; line-height: 1.8; color: #2c3e50;">
|
| 207 |
+
{section['content']}
|
| 208 |
+
</div>
|
| 209 |
+
""")
|
| 210 |
+
|
| 211 |
+
# Add JavaScript for copy and download functionality
|
| 212 |
+
js_code = """
|
| 213 |
+
<script>
|
| 214 |
+
function copyCode(elementId) {
|
| 215 |
+
const codeElement = document.getElementById(elementId);
|
| 216 |
+
const code = codeElement.textContent;
|
| 217 |
+
navigator.clipboard.writeText(code).then(() => {
|
| 218 |
+
alert('Code copied to clipboard!');
|
| 219 |
+
}).catch(err => {
|
| 220 |
+
console.error('Failed to copy:', err);
|
| 221 |
+
});
|
| 222 |
+
}
|
| 223 |
+
|
| 224 |
+
function downloadCode(elementId, language) {
|
| 225 |
+
const codeElement = document.getElementById(elementId);
|
| 226 |
+
const code = codeElement.textContent;
|
| 227 |
+
|
| 228 |
+
// Determine file extension
|
| 229 |
+
const extensions = {
|
| 230 |
+
'python': 'py',
|
| 231 |
+
'javascript': 'js',
|
| 232 |
+
'typescript': 'ts',
|
| 233 |
+
'html': 'html',
|
| 234 |
+
'css': 'css',
|
| 235 |
+
'java': 'java',
|
| 236 |
+
'cpp': 'cpp',
|
| 237 |
+
'c': 'c',
|
| 238 |
+
'ruby': 'rb',
|
| 239 |
+
'go': 'go',
|
| 240 |
+
'rust': 'rs',
|
| 241 |
+
'swift': 'swift',
|
| 242 |
+
'kotlin': 'kt',
|
| 243 |
+
'plaintext': 'txt'
|
| 244 |
+
};
|
| 245 |
+
|
| 246 |
+
const ext = extensions[language.toLowerCase()] || 'txt';
|
| 247 |
+
const filename = `code_snippet.${ext}`;
|
| 248 |
+
|
| 249 |
+
// Create blob and download
|
| 250 |
+
const blob = new Blob([code], { type: 'text/plain' });
|
| 251 |
+
const url = window.URL.createObjectURL(blob);
|
| 252 |
+
const a = document.createElement('a');
|
| 253 |
+
a.href = url;
|
| 254 |
+
a.download = filename;
|
| 255 |
+
document.body.appendChild(a);
|
| 256 |
+
a.click();
|
| 257 |
+
document.body.removeChild(a);
|
| 258 |
+
window.URL.revokeObjectURL(url);
|
| 259 |
+
}
|
| 260 |
+
</script>
|
| 261 |
+
"""
|
| 262 |
+
|
| 263 |
+
return js_code + "\n".join(html_parts)
|
| 264 |
|
| 265 |
|
| 266 |
# Initialize model
|
| 267 |
+
print("Initializing VibeThinker-1.5B with vLLM...")
|
| 268 |
+
model = VibeThinkerVLLM()
|
| 269 |
|
| 270 |
# Create Gradio interface
|
| 271 |
def generate_response(prompt, temperature, max_tokens, top_p):
|
| 272 |
if not prompt.strip():
|
| 273 |
+
return "<p style='color: red;'>Please enter a question.</p>"
|
| 274 |
|
| 275 |
try:
|
| 276 |
+
# Generate raw response
|
| 277 |
+
raw_response = model.infer_text(
|
| 278 |
prompt=prompt,
|
| 279 |
temperature=temperature,
|
| 280 |
max_tokens=max_tokens,
|
| 281 |
top_p=top_p
|
| 282 |
)
|
| 283 |
+
|
| 284 |
+
# Parse and format the response
|
| 285 |
+
sections = parse_model_output(raw_response)
|
| 286 |
+
formatted_html = format_output_for_display(sections)
|
| 287 |
+
|
| 288 |
+
return formatted_html
|
| 289 |
+
|
| 290 |
except Exception as e:
|
| 291 |
+
return f"<p style='color: red;'><strong>Error:</strong> {str(e)}</p>"
|
| 292 |
|
| 293 |
|
| 294 |
+
# Custom CSS for better styling
|
| 295 |
+
custom_css = """
|
| 296 |
+
.thinking-section summary:hover {
|
| 297 |
+
background-color: #fef5e7;
|
| 298 |
+
}
|
| 299 |
+
|
| 300 |
+
.code-section summary:hover {
|
| 301 |
+
background-color: #d6eaf8;
|
| 302 |
+
}
|
| 303 |
+
|
| 304 |
+
.text-section {
|
| 305 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
|
| 306 |
+
}
|
| 307 |
+
|
| 308 |
+
details[open] summary {
|
| 309 |
+
border-bottom: 1px solid #ddd;
|
| 310 |
+
margin-bottom: 10px;
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
/* Syntax highlighting enhancements */
|
| 314 |
+
code {
|
| 315 |
+
font-family: 'Fira Code', 'Courier New', monospace;
|
| 316 |
+
}
|
| 317 |
+
"""
|
| 318 |
+
|
| 319 |
# Gradio UI
|
| 320 |
+
with gr.Blocks(title="VibeThinker-1.5B Advanced", css=custom_css) as demo:
|
| 321 |
gr.Markdown("""
|
| 322 |
+
# π§ VibeThinker-1.5B: Advanced Reasoning Interface
|
| 323 |
|
| 324 |
+
**Optimized with vLLM** for 10-20x faster inference! β‘
|
| 325 |
|
| 326 |
+
**Features**:
|
| 327 |
+
- π€ **Collapsible Thinking Sections**: See the model's reasoning process
|
| 328 |
+
- π» **Interactive Code Blocks**: Copy or download code snippets
|
| 329 |
+
- π **Clean Text Display**: Easy-to-read formatted responses
|
| 330 |
|
| 331 |
+
**Best for**: Competitive math problems and algorithm coding challenges
|
|
|
|
|
|
|
|
|
|
| 332 |
|
| 333 |
[GitHub](https://github.com/WeiboAI/VibeThinker) | [HuggingFace Model](https://huggingface.co/WeiboAI/VibeThinker-1.5B) | [Paper](https://huggingface.co/papers/2511.06221)
|
| 334 |
""")
|
|
|
|
| 337 |
with gr.Column(scale=1):
|
| 338 |
prompt_input = gr.Textbox(
|
| 339 |
label="Your Question",
|
| 340 |
+
placeholder="Ask a math problem or coding challenge (in English)...",
|
| 341 |
+
lines=6
|
| 342 |
)
|
| 343 |
|
| 344 |
+
with gr.Accordion("βοΈ Advanced Settings", open=False):
|
| 345 |
temperature_slider = gr.Slider(
|
| 346 |
minimum=0.1,
|
| 347 |
maximum=1.5,
|
|
|
|
| 355 |
maximum=40960,
|
| 356 |
value=8192,
|
| 357 |
step=512,
|
| 358 |
+
label="Max Tokens"
|
| 359 |
)
|
| 360 |
|
| 361 |
top_p_slider = gr.Slider(
|
|
|
|
| 366 |
label="Top P"
|
| 367 |
)
|
| 368 |
|
| 369 |
+
submit_btn = gr.Button("π Generate Solution", variant="primary", size="lg")
|
| 370 |
+
clear_btn = gr.Button("ποΈ Clear", size="sm")
|
| 371 |
|
| 372 |
with gr.Column(scale=1):
|
| 373 |
+
output_html = gr.HTML(
|
| 374 |
label="Model Response",
|
| 375 |
+
value="<p style='color: #7f8c8d; text-align: center; padding: 40px;'>Your response will appear here...</p>"
|
|
|
|
| 376 |
)
|
| 377 |
|
| 378 |
# Example questions
|
| 379 |
gr.Examples(
|
| 380 |
examples=[
|
| 381 |
+
["Make me a single page html application that takes a color and outputs a color theme based on that color", 0.6, 16384, 0.95],
|
| 382 |
+
["Solve this AIME problem: Find the number of positive integers n β€ 1000 such that n^2 + n + 41 is prime.", 0.6, 12288, 0.95],
|
| 383 |
+
["Write a Python function to implement the Euclidean algorithm for finding GCD, then optimize it.", 0.6, 8192, 0.95],
|
| 384 |
+
["Prove that the sum of the first n odd numbers equals n^2 using mathematical induction.", 0.6, 8192, 0.95],
|
| 385 |
],
|
| 386 |
inputs=[prompt_input, temperature_slider, max_tokens_slider, top_p_slider],
|
| 387 |
+
label="π Example Problems"
|
| 388 |
)
|
| 389 |
|
| 390 |
# Event handlers
|
| 391 |
submit_btn.click(
|
| 392 |
fn=generate_response,
|
| 393 |
inputs=[prompt_input, temperature_slider, max_tokens_slider, top_p_slider],
|
| 394 |
+
outputs=output_html
|
| 395 |
)
|
| 396 |
|
| 397 |
clear_btn.click(
|
| 398 |
+
fn=lambda: ("", "<p style='color: #7f8c8d; text-align: center; padding: 40px;'>Your response will appear here...</p>"),
|
| 399 |
inputs=[],
|
| 400 |
+
outputs=[prompt_input, output_html]
|
| 401 |
)
|
| 402 |
|
| 403 |
gr.Markdown("""
|
| 404 |
---
|
| 405 |
+
### π Performance Comparison:
|
| 406 |
+
|
| 407 |
+
| Metric | VibeThinker-1.5B | DeepSeek R1 (671B) | Size Ratio |
|
| 408 |
+
|--------|------------------|---------------------|------------|
|
| 409 |
+
| AIME24 | **80.3** | 79.8 | **400Γ smaller** |
|
| 410 |
+
| AIME25 | **74.4** | 70.0 | **400Γ smaller** |
|
| 411 |
+
| HMMT25 | **50.4** | 41.7 | **400Γ smaller** |
|
| 412 |
+
| Training Cost | **$7,800** | $294,000+ | **40Γ cheaper** |
|
| 413 |
|
| 414 |
+
π **Powered by vLLM** for ultra-fast inference on T4 GPUs
|
| 415 |
""")
|
| 416 |
|
| 417 |
# Launch the app
|
| 418 |
if __name__ == "__main__":
|
| 419 |
+
demo.queue(max_size=20)
|
| 420 |
+
demo.launch(share=False)
|