--- title: VibeThinker-1.5B Competitive Coding Assistant emoji: 🧠 colorFrom: indigo colorTo: purple sdk: gradio sdk_version: 5.49.1 app_file: app.py pinned: false license: mit --- # 🧠 VibeThinker-1.5B Competitive Coding Assistant An interactive demo of **VibeThinker-1.5B** optimized for competitive programming challenges. ## ⚡ Performance Highlights - **AIME24**: 80.3 (surpasses DeepSeek R1's 79.8) - **AIME25**: 74.4 (vs DeepSeek R1's 70.0) - **LiveCodeBench V6**: 51.1 (competitive coding) - **Training Cost**: Only $7,800 USD - **Parameters**: 1.5B (400× smaller than DeepSeek R1) ## 🎯 What It's Best At ✅ **Competitive Programming**: LeetCode, Codeforces, AtCoder-style algorithm problems ✅ **Python Coding Challenges**: Problems with clear input/output specifications ✅ **Mathematical Reasoning**: Complex proofs and formal reasoning tasks ✅ **Algorithm Design**: Dynamic programming, graph algorithms, optimization problems ## ⚠️ Important Limitations This model is **specialized for competitive programming**, not general software development: ❌ Not suitable for: Building applications, debugging real codebases, using specific libraries ❌ Limited knowledge: Low encyclopedic knowledge, Python-focused training ❌ Overthinking tendency: May generate verbose reasoning for simple tasks ❌ Narrow scope: Optimized for benchmark-style problems, not production code *See [community feedback analysis](https://www.reddit.com/r/LocalLLaMA/comments/1ou1emx/) for detailed real-world testing insights* ## 🚀 Features - **🧠 Intelligent Parsing**: Automatic separation of reasoning and solution - **📊 Token Tracking**: Real-time stats on generation time and token usage - **💻 Clean Code Display**: Syntax-highlighted, copyable/downloadable code blocks - **📱 Responsive Design**: Modern UI with collapsible reasoning sections - **🎨 High Contrast**: Readable output with dark code blocks on white background - **🔄 Loop Detection**: Automatically detects and truncates repetitive output ## 🛠️ Technical Details ### Model Information - **Base Model**: Qwen2.5-Math-1.5B - **Training Method**: Spectrum-to-Signal Principle (SSP) - Supervised Fine-Tuning (SFT) for solution diversity - Reinforcement Learning (RL) for correct reasoning paths - **Inference Engine**: Standard `transformers` library (PyTorch) - **Token Efficiency**: Configurable thinking depth via prompt hints ### Hardware Requirements - **Recommended**: Nvidia T4 - small (16 GB VRAM) - **Memory Usage**: ~3-4 GB VRAM (1.5B params in float16) - **Cost**: $0.40/hour on HuggingFace Spaces ### Implementation ```python # Clean, simple transformers implementation - torch.float16 for efficiency - device_map="auto" for automatic GPU placement - Repetition penalty (1.1) to reduce loops - Automatic loop detection and truncation ``` ## 📖 Usage Tips ### For Best Results: 1. **Frame problems competitively**: Clear input/output, edge cases, constraints 2. **Adjust thinking tokens**: - 1024-2048 for quick, simple problems - 3072-4096 for standard algorithm challenges - 6144-8192 for complex multi-step reasoning 3. **Use Python**: Model trained primarily on Python code 4. **Specify format**: Request specific output format (function, class, test cases) ### Example Prompts: ``` ✅ Good: "Write a function to find the longest increasing subsequence. Include time/space complexity analysis and test with [10,9,2,5,3,7,101,18]" ✅ Good: "Implement Dijkstra's algorithm with a min-heap. Handle disconnected graphs." ❌ Poor: "Debug my React app" (not its purpose) ❌ Poor: "How do I use pandas?" (limited library knowledge) ``` ## 🔗 Resources - **Model**: [WeiboAI/VibeThinker-1.5B](https://huggingface.co/WeiboAI/VibeThinker-1.5B) - **Paper**: [arXiv:2511.06221](https://arxiv.org/abs/2511.06221) - **GitHub**: [WeiboAI/VibeThinker](https://github.com/WeiboAI/VibeThinker) - **License**: MIT ## 🙏 Credits Developed by **WeiboAI**. This Space demonstrates the model with a clean interface and enhanced user experience. ## 📝 Citation ```bibtex @article{vibethinker2025, title={Tiny Model, Big Logic: Diversity-Driven Optimization Elicits Large-Model Reasoning Ability in VibeThinker-1.5B}, author={WeiboAI Team}, journal={arXiv preprint arXiv:2511.06221}, year={2025} } ```