Spaces:
Runtime error
Runtime error
Commit
ยท
e8a2c53
1
Parent(s):
899f482
- .gitignore +2 -1
- xtreme_distil_use.py +59 -0
.gitignore
CHANGED
|
@@ -4,4 +4,5 @@ __pycache__/
|
|
| 4 |
*.pyd
|
| 5 |
*.log
|
| 6 |
.venv/
|
| 7 |
-
xtreme-distil-review-classifier/
|
|
|
|
|
|
| 4 |
*.pyd
|
| 5 |
*.log
|
| 6 |
.venv/
|
| 7 |
+
xtreme-distil-review-classifier/
|
| 8 |
+
shopping.txt
|
xtreme_distil_use.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
|
| 4 |
+
# 1. ๋ชจ๋ธ์ด ์ ์ฅ๋ ํด๋ ๊ฒฝ๋ก ์ง์
|
| 5 |
+
LOAD_MODEL_PATH = "./xtreme-distil-review-classifier"
|
| 6 |
+
|
| 7 |
+
# 2. GPU/CPU ์ฅ์น ์ค์
|
| 8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
+
print(f"์ฌ์ฉ ์ฅ์น: {device}")
|
| 10 |
+
|
| 11 |
+
# 3. ์ ์ฅ๋ ํ ํฌ๋์ด์ ์ ๋ชจ๋ธ ๋ก๋
|
| 12 |
+
# ์ ์ฅ๋ config.json๊ณผ model.safetensors ํ์ผ์ ๋ฐํ์ผ๋ก ๋ก๋ํฉ๋๋ค.
|
| 13 |
+
print(f"\n--- ๋ชจ๋ธ ๋ก๋ ์ค: {LOAD_MODEL_PATH} ---")
|
| 14 |
+
loaded_tokenizer = AutoTokenizer.from_pretrained(LOAD_MODEL_PATH)
|
| 15 |
+
loaded_model = AutoModelForSequenceClassification.from_pretrained(LOAD_MODEL_PATH)
|
| 16 |
+
|
| 17 |
+
# ๋ชจ๋ธ์ ์ค์ ๋ ์ฅ์น(GPU ๋๋ CPU)๋ก ์ด๋
|
| 18 |
+
loaded_model.to(device)
|
| 19 |
+
loaded_model.eval() # ๋ชจ๋ธ์ ํ๊ฐ ๋ชจ๋๋ก ์ค์ (ํ์)
|
| 20 |
+
|
| 21 |
+
# 4. ๋ถ๋ฅ ํจ์ ์ ์
|
| 22 |
+
def classify_review(text):
|
| 23 |
+
# ํ
์คํธ๋ฅผ ํ ํฐํํ๊ณ ์ฅ์น๋ก ์ด๋
|
| 24 |
+
inputs = loaded_tokenizer(
|
| 25 |
+
text,
|
| 26 |
+
return_tensors="pt", # PyTorch ํ
์๋ก ๋ฐํ
|
| 27 |
+
padding=True,
|
| 28 |
+
truncation=True
|
| 29 |
+
).to(device)
|
| 30 |
+
|
| 31 |
+
# ๋ชจ๋ธ ์ถ๋ก (Inference)
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
outputs = loaded_model(**inputs)
|
| 34 |
+
|
| 35 |
+
# ๊ฒฐ๊ณผ ์ฒ๋ฆฌ
|
| 36 |
+
probabilities = torch.softmax(outputs.logits, dim=1)
|
| 37 |
+
predicted_class_id = probabilities.argmax().item()
|
| 38 |
+
|
| 39 |
+
# ๋ ์ด๋ธ ๋งคํ (ํ์ธ ํ๋ ์ ์ค์ ํ 0: ๋ถ์ , 1: ๊ธ์ ๊ธฐ์ค)
|
| 40 |
+
label_map = {0: "๋ถ์ (Negative)", 1: "๊ธ์ (Positive)"}
|
| 41 |
+
predicted_label = label_map[predicted_class_id]
|
| 42 |
+
confidence = probabilities[0][predicted_class_id].item()
|
| 43 |
+
|
| 44 |
+
return predicted_label, confidence
|
| 45 |
+
|
| 46 |
+
# 5. ์๋ก์ด ๋น๊ทผ๋ง์ผ ๋ฆฌ๋ทฐ ํ
์คํธ ์คํ
|
| 47 |
+
new_reviews = [
|
| 48 |
+
"๋งค๋๊ฐ ์ ๋ง ์ข์ผ์ธ์! ๊ธฐ๋ถ ์ข์ ๊ฑฐ๋๋ค์",
|
| 49 |
+
"๋ฌผ๊ฑด ์ํ๊ฐ ์๊ฐ๋ณด๋ค ๋๋ฌด ์ ์ข์์ ์์๋ค๋ ๋๋์ด ๋ญ๋๋ค.",
|
| 50 |
+
"๋น ๋ฅธ ๊ฑฐ๋ ๊ฐ์ฌํฉ๋๋ค. ๋ฌธ์ ์์ด ์ ๋ฐ์์ด์.",
|
| 51 |
+
"์ฐ๋ฝ์ ์๋ฐ๋ค์",
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
print("\n--- ์๋ก์ด ๋ฆฌ๋ทฐ ๋ถ๋ฅ ๊ฒฐ๊ณผ ---")
|
| 55 |
+
for review in new_reviews:
|
| 56 |
+
label, confidence = classify_review(review)
|
| 57 |
+
print(f"๋ฆฌ๋ทฐ: '{review}'")
|
| 58 |
+
print(f" -> ์์ธก ๋ถ๋ฅ: **{label}** (ํ๋ฅ : {confidence:.4f})")
|
| 59 |
+
print("-" * 35)
|