Spaces:
Paused
Paused
Helw150
commited on
Commit
·
5279276
1
Parent(s):
8aaf9c8
Orca!
Browse files
app.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import time
|
| 2 |
import traceback
|
| 3 |
from dataclasses import dataclass, field
|
|
@@ -5,6 +7,7 @@ from dataclasses import dataclass, field
|
|
| 5 |
import gradio as gr
|
| 6 |
import librosa
|
| 7 |
import numpy as np
|
|
|
|
| 8 |
import soundfile as sf
|
| 9 |
import spaces
|
| 10 |
import torch
|
|
@@ -12,7 +15,8 @@ import xxhash
|
|
| 12 |
from datasets import Audio
|
| 13 |
from transformers import AutoModel
|
| 14 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 15 |
-
|
|
|
|
| 16 |
|
| 17 |
if gr.NO_RELOAD:
|
| 18 |
diva_model = AutoModel.from_pretrained(
|
|
@@ -48,10 +52,8 @@ def diva_audio(audio_input, do_sample=False, temperature=0.001, prev_outs=None):
|
|
| 48 |
|
| 49 |
@dataclass
|
| 50 |
class AppState:
|
| 51 |
-
stream: np.ndarray | None = None
|
| 52 |
-
sampling_rate: int = 0
|
| 53 |
-
stopped: bool = False
|
| 54 |
conversation: list = field(default_factory=list)
|
|
|
|
| 55 |
model_outs: any = None
|
| 56 |
|
| 57 |
|
|
@@ -63,16 +65,16 @@ def process_audio(audio: tuple, state: AppState):
|
|
| 63 |
def response(state: AppState, audio: tuple):
|
| 64 |
if not audio:
|
| 65 |
return AppState()
|
| 66 |
-
state.stream = audio[1]
|
| 67 |
-
state.sampling_rate = audio[0]
|
| 68 |
|
| 69 |
-
file_name = f"/tmp/{xxhash.xxh32(bytes(
|
| 70 |
|
| 71 |
-
sf.write(file_name,
|
| 72 |
|
| 73 |
state.conversation.append(
|
| 74 |
{"role": "user", "content": {"path": file_name, "mime_type": "audio/wav"}}
|
| 75 |
)
|
|
|
|
|
|
|
| 76 |
if spaces.config.Config.zero_gpu:
|
| 77 |
if state.model_outs is not None:
|
| 78 |
state.model_outs = tuple(
|
|
@@ -88,18 +90,23 @@ def response(state: AppState, audio: tuple):
|
|
| 88 |
causal_outs = state.model_outs
|
| 89 |
state.model_outs = None
|
| 90 |
prev_outs = causal_outs
|
| 91 |
-
|
| 92 |
for resp, outs in diva_audio(
|
| 93 |
-
(
|
| 94 |
prev_outs=(prev_outs if prev_outs is not None else None),
|
| 95 |
):
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
del outs.logits
|
| 105 |
del outs.hidden_states
|
|
@@ -107,9 +114,21 @@ def response(state: AppState, audio: tuple):
|
|
| 107 |
outs = tuple(
|
| 108 |
tuple(vec.cpu().numpy() for vec in tup) for tup in outs.past_key_values
|
| 109 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
yield (
|
| 111 |
AppState(conversation=state.conversation, model_outs=outs),
|
| 112 |
state.conversation,
|
|
|
|
| 113 |
)
|
| 114 |
|
| 115 |
|
|
@@ -190,6 +209,8 @@ with gr.Blocks(theme=theme, js=js) as demo:
|
|
| 190 |
)
|
| 191 |
with gr.Row():
|
| 192 |
chatbot = gr.Chatbot(label="Conversation", type="messages")
|
|
|
|
|
|
|
| 193 |
state = gr.State(value=AppState())
|
| 194 |
stream = input_audio.start_recording(
|
| 195 |
process_audio,
|
|
@@ -197,15 +218,15 @@ with gr.Blocks(theme=theme, js=js) as demo:
|
|
| 197 |
[input_audio, state],
|
| 198 |
)
|
| 199 |
respond = input_audio.stop_recording(
|
| 200 |
-
response, [state, input_audio], [state, chatbot]
|
| 201 |
)
|
| 202 |
-
restart =
|
| 203 |
lambda state: state, state, state, js=js_reset
|
| 204 |
)
|
| 205 |
|
| 206 |
cancel = gr.Button("Restart Conversation", variant="stop")
|
| 207 |
cancel.click(
|
| 208 |
-
lambda: (AppState(
|
| 209 |
None,
|
| 210 |
[state, input_audio],
|
| 211 |
cancels=[respond, restart],
|
|
|
|
| 1 |
+
import io
|
| 2 |
+
import os
|
| 3 |
import time
|
| 4 |
import traceback
|
| 5 |
from dataclasses import dataclass, field
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
import librosa
|
| 9 |
import numpy as np
|
| 10 |
+
import pvorca
|
| 11 |
import soundfile as sf
|
| 12 |
import spaces
|
| 13 |
import torch
|
|
|
|
| 15 |
from datasets import Audio
|
| 16 |
from transformers import AutoModel
|
| 17 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 18 |
+
|
| 19 |
+
orca = pvorca.create(access_key=os.environ.get("ORCA_KEY"))
|
| 20 |
|
| 21 |
if gr.NO_RELOAD:
|
| 22 |
diva_model = AutoModel.from_pretrained(
|
|
|
|
| 52 |
|
| 53 |
@dataclass
|
| 54 |
class AppState:
|
|
|
|
|
|
|
|
|
|
| 55 |
conversation: list = field(default_factory=list)
|
| 56 |
+
stopped: bool = False
|
| 57 |
model_outs: any = None
|
| 58 |
|
| 59 |
|
|
|
|
| 65 |
def response(state: AppState, audio: tuple):
|
| 66 |
if not audio:
|
| 67 |
return AppState()
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
file_name = f"/tmp/{xxhash.xxh32(bytes(audio[1])).hexdigest()}.wav"
|
| 70 |
|
| 71 |
+
sf.write(file_name, audio[1], audio[0], format="wav")
|
| 72 |
|
| 73 |
state.conversation.append(
|
| 74 |
{"role": "user", "content": {"path": file_name, "mime_type": "audio/wav"}}
|
| 75 |
)
|
| 76 |
+
state.conversation.append({"role": "assistant", "content": ""})
|
| 77 |
+
yield state, state.conversation, None
|
| 78 |
if spaces.config.Config.zero_gpu:
|
| 79 |
if state.model_outs is not None:
|
| 80 |
state.model_outs = tuple(
|
|
|
|
| 90 |
causal_outs = state.model_outs
|
| 91 |
state.model_outs = None
|
| 92 |
prev_outs = causal_outs
|
| 93 |
+
stream = orca.stream_open()
|
| 94 |
for resp, outs in diva_audio(
|
| 95 |
+
(audio[0], audio[1]),
|
| 96 |
prev_outs=(prev_outs if prev_outs is not None else None),
|
| 97 |
):
|
| 98 |
+
prev_resp = state.conversation[-1]["content"]
|
| 99 |
+
state.conversation[-1]["content"] = resp
|
| 100 |
+
pcm = stream.synthesize(resp[len(prev_resp) :])
|
| 101 |
+
audio_chunk = None
|
| 102 |
+
if pcm is not None:
|
| 103 |
+
mp3_io = io.BytesIO()
|
| 104 |
+
sf.write(
|
| 105 |
+
mp3_io, np.asarray(pcm).astype(np.int16), orca.sample_rate, format="mp3"
|
| 106 |
+
)
|
| 107 |
+
audio_chunk = mp3_io.getvalue()
|
| 108 |
+
mp3_io.close()
|
| 109 |
+
yield state, state.conversation, audio_chunk
|
| 110 |
|
| 111 |
del outs.logits
|
| 112 |
del outs.hidden_states
|
|
|
|
| 114 |
outs = tuple(
|
| 115 |
tuple(vec.cpu().numpy() for vec in tup) for tup in outs.past_key_values
|
| 116 |
)
|
| 117 |
+
audio_chunk = None
|
| 118 |
+
pcm = stream.flush()
|
| 119 |
+
if pcm is not None:
|
| 120 |
+
audio_chunk = np.asarray(pcm).tobytes()
|
| 121 |
+
mp3_io = io.BytesIO()
|
| 122 |
+
sf.write(
|
| 123 |
+
mp3_io, np.asarray(pcm).astype(np.int16), orca.sample_rate, format="mp3"
|
| 124 |
+
)
|
| 125 |
+
audio_chunk = mp3_io.getvalue()
|
| 126 |
+
mp3_io.close()
|
| 127 |
+
stream.close()
|
| 128 |
yield (
|
| 129 |
AppState(conversation=state.conversation, model_outs=outs),
|
| 130 |
state.conversation,
|
| 131 |
+
audio_chunk,
|
| 132 |
)
|
| 133 |
|
| 134 |
|
|
|
|
| 209 |
)
|
| 210 |
with gr.Row():
|
| 211 |
chatbot = gr.Chatbot(label="Conversation", type="messages")
|
| 212 |
+
with gr.Row():
|
| 213 |
+
output_audio = gr.Audio(label="Output Audio", streaming=True, autoplay=True)
|
| 214 |
state = gr.State(value=AppState())
|
| 215 |
stream = input_audio.start_recording(
|
| 216 |
process_audio,
|
|
|
|
| 218 |
[input_audio, state],
|
| 219 |
)
|
| 220 |
respond = input_audio.stop_recording(
|
| 221 |
+
response, [state, input_audio], [state, chatbot, output_audio]
|
| 222 |
)
|
| 223 |
+
restart = output_audio.stop(start_recording_user, [state], [input_audio]).then(
|
| 224 |
lambda state: state, state, state, js=js_reset
|
| 225 |
)
|
| 226 |
|
| 227 |
cancel = gr.Button("Restart Conversation", variant="stop")
|
| 228 |
cancel.click(
|
| 229 |
+
lambda: (AppState(), gr.Audio(recording=False)),
|
| 230 |
None,
|
| 231 |
[state, input_audio],
|
| 232 |
cancels=[respond, restart],
|