Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import subprocess
|
| 4 |
+
import shutil
|
| 5 |
+
import json
|
| 6 |
+
import time
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
# Setup directories
|
| 11 |
+
DATASET_DIR = Path("./datasets")
|
| 12 |
+
OUTPUT_DIR = Path("./output")
|
| 13 |
+
DATASET_DIR.mkdir(exist_ok=True)
|
| 14 |
+
OUTPUT_DIR.mkdir(exist_ok=True)
|
| 15 |
+
|
| 16 |
+
# Global variable to store dataset path
|
| 17 |
+
current_dataset_path = None
|
| 18 |
+
|
| 19 |
+
def check_gpu():
|
| 20 |
+
"""Check if GPU is available"""
|
| 21 |
+
if torch.cuda.is_available():
|
| 22 |
+
gpu_name = torch.cuda.get_device_name(0)
|
| 23 |
+
return f"β
GPU Available: {gpu_name}"
|
| 24 |
+
return "β οΈ No GPU detected - training will be slow"
|
| 25 |
+
|
| 26 |
+
def upload_and_prepare_dataset(files, dataset_name, trigger_word):
|
| 27 |
+
"""Upload images and prepare dataset"""
|
| 28 |
+
global current_dataset_path
|
| 29 |
+
|
| 30 |
+
if not files:
|
| 31 |
+
return "β Please upload at least one image", None, ""
|
| 32 |
+
|
| 33 |
+
if not dataset_name:
|
| 34 |
+
dataset_name = f"dataset_{int(time.time())}"
|
| 35 |
+
|
| 36 |
+
# Create dataset directory
|
| 37 |
+
dataset_path = DATASET_DIR / dataset_name
|
| 38 |
+
dataset_path.mkdir(exist_ok=True, parents=True)
|
| 39 |
+
|
| 40 |
+
# Save images
|
| 41 |
+
image_count = 0
|
| 42 |
+
for file in files:
|
| 43 |
+
if file.name.lower().endswith(('.png', '.jpg', '.jpeg', '.webp', '.bmp')):
|
| 44 |
+
filename = Path(file.name).name
|
| 45 |
+
destination = dataset_path / filename
|
| 46 |
+
shutil.copy(file.name, destination)
|
| 47 |
+
|
| 48 |
+
# Create simple caption file
|
| 49 |
+
caption_file = destination.with_suffix('.txt')
|
| 50 |
+
caption_text = trigger_word if trigger_word else "a photo"
|
| 51 |
+
with open(caption_file, 'w') as f:
|
| 52 |
+
f.write(caption_text)
|
| 53 |
+
|
| 54 |
+
image_count += 1
|
| 55 |
+
|
| 56 |
+
if image_count == 0:
|
| 57 |
+
return "β No valid images found. Upload PNG, JPG, JPEG, or WEBP files.", None, ""
|
| 58 |
+
|
| 59 |
+
current_dataset_path = str(dataset_path)
|
| 60 |
+
|
| 61 |
+
status = f"β
Successfully uploaded {image_count} images\n"
|
| 62 |
+
status += f"π Dataset: {dataset_name}\n"
|
| 63 |
+
if trigger_word:
|
| 64 |
+
status += f"π·οΈ Trigger word: '{trigger_word}'\n"
|
| 65 |
+
status += f"πΎ Location: {current_dataset_path}"
|
| 66 |
+
|
| 67 |
+
return status, current_dataset_path, f"Dataset ready: {dataset_name}"
|
| 68 |
+
|
| 69 |
+
def train_lora(
|
| 70 |
+
dataset_path,
|
| 71 |
+
project_name,
|
| 72 |
+
trigger_word,
|
| 73 |
+
steps,
|
| 74 |
+
learning_rate,
|
| 75 |
+
lora_rank,
|
| 76 |
+
resolution,
|
| 77 |
+
progress=gr.Progress()
|
| 78 |
+
):
|
| 79 |
+
"""Train LoRA model"""
|
| 80 |
+
|
| 81 |
+
if not dataset_path or not os.path.exists(dataset_path):
|
| 82 |
+
return "β Please upload a dataset first!", None
|
| 83 |
+
|
| 84 |
+
if not project_name:
|
| 85 |
+
project_name = f"lora_{int(time.time())}"
|
| 86 |
+
|
| 87 |
+
output_path = OUTPUT_DIR / project_name
|
| 88 |
+
output_path.mkdir(exist_ok=True, parents=True)
|
| 89 |
+
|
| 90 |
+
# Create training config
|
| 91 |
+
config = {
|
| 92 |
+
"job": "extension",
|
| 93 |
+
"config": {
|
| 94 |
+
"name": project_name,
|
| 95 |
+
"process": [{
|
| 96 |
+
"type": "sd_trainer",
|
| 97 |
+
"training_folder": str(output_path),
|
| 98 |
+
"device": "cuda:0",
|
| 99 |
+
"trigger_word": trigger_word or "",
|
| 100 |
+
"network": {
|
| 101 |
+
"type": "lora",
|
| 102 |
+
"linear": int(lora_rank),
|
| 103 |
+
"linear_alpha": int(lora_rank),
|
| 104 |
+
},
|
| 105 |
+
"save": {
|
| 106 |
+
"dtype": "float16",
|
| 107 |
+
"save_every": max(100, int(steps / 4)),
|
| 108 |
+
"max_step_saves_to_keep": 3,
|
| 109 |
+
},
|
| 110 |
+
"datasets": [{
|
| 111 |
+
"folder_path": dataset_path,
|
| 112 |
+
"caption_ext": "txt",
|
| 113 |
+
"caption_dropout_rate": 0.05,
|
| 114 |
+
"resolution": [int(resolution), int(resolution)],
|
| 115 |
+
}],
|
| 116 |
+
"train": {
|
| 117 |
+
"batch_size": 1,
|
| 118 |
+
"steps": int(steps),
|
| 119 |
+
"gradient_accumulation_steps": 1,
|
| 120 |
+
"train_unet": True,
|
| 121 |
+
"train_text_encoder": False,
|
| 122 |
+
"gradient_checkpointing": True,
|
| 123 |
+
"noise_scheduler": "flowmatch",
|
| 124 |
+
"optimizer": "adamw8bit",
|
| 125 |
+
"lr": float(learning_rate),
|
| 126 |
+
"ema_config": {
|
| 127 |
+
"use_ema": True,
|
| 128 |
+
"ema_decay": 0.99,
|
| 129 |
+
},
|
| 130 |
+
"dtype": "bf16",
|
| 131 |
+
},
|
| 132 |
+
"model": {
|
| 133 |
+
"name_or_path": "Tongyi-MAI/Z-Image-Base",
|
| 134 |
+
"is_v_pred": False,
|
| 135 |
+
"quantize": True,
|
| 136 |
+
},
|
| 137 |
+
"sample": {
|
| 138 |
+
"sampler": "flowmatch",
|
| 139 |
+
"sample_every": max(100, int(steps / 4)),
|
| 140 |
+
"width": int(resolution),
|
| 141 |
+
"height": int(resolution),
|
| 142 |
+
"prompts": [
|
| 143 |
+
f"{trigger_word} high quality photo" if trigger_word else "high quality photo",
|
| 144 |
+
f"{trigger_word} beautiful scene" if trigger_word else "beautiful scene",
|
| 145 |
+
],
|
| 146 |
+
"neg": "",
|
| 147 |
+
"seed": 42,
|
| 148 |
+
"guidance_scale": 0.0,
|
| 149 |
+
"sample_steps": 9,
|
| 150 |
+
},
|
| 151 |
+
}]
|
| 152 |
+
}
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
# Save config
|
| 156 |
+
config_path = output_path / "config.json"
|
| 157 |
+
with open(config_path, 'w') as f:
|
| 158 |
+
json.dump(config, f, indent=2)
|
| 159 |
+
|
| 160 |
+
progress(0.1, desc="Installing AI Toolkit...")
|
| 161 |
+
|
| 162 |
+
# Install AI Toolkit if not exists
|
| 163 |
+
if not Path("./ai-toolkit").exists():
|
| 164 |
+
try:
|
| 165 |
+
subprocess.run(
|
| 166 |
+
["git", "clone", "https://github.com/ostris/ai-toolkit.git"],
|
| 167 |
+
check=True,
|
| 168 |
+
capture_output=True
|
| 169 |
+
)
|
| 170 |
+
os.chdir("ai-toolkit")
|
| 171 |
+
subprocess.run(
|
| 172 |
+
["git", "submodule", "update", "--init", "--recursive"],
|
| 173 |
+
check=True,
|
| 174 |
+
capture_output=True
|
| 175 |
+
)
|
| 176 |
+
subprocess.run(
|
| 177 |
+
["pip", "install", "-q", "-r", "requirements.txt"],
|
| 178 |
+
check=True
|
| 179 |
+
)
|
| 180 |
+
os.chdir("..")
|
| 181 |
+
except Exception as e:
|
| 182 |
+
return f"β Failed to install AI Toolkit: {str(e)}", None
|
| 183 |
+
|
| 184 |
+
progress(0.3, desc="Starting training...")
|
| 185 |
+
|
| 186 |
+
# Run training
|
| 187 |
+
try:
|
| 188 |
+
result = subprocess.run(
|
| 189 |
+
["python", "ai-toolkit/run.py", str(config_path)],
|
| 190 |
+
capture_output=True,
|
| 191 |
+
text=True,
|
| 192 |
+
timeout=3600 # 1 hour timeout
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
if result.returncode != 0:
|
| 196 |
+
return f"β Training failed:\n{result.stderr}", None
|
| 197 |
+
|
| 198 |
+
progress(0.9, desc="Training complete! Finding LoRA file...")
|
| 199 |
+
|
| 200 |
+
# Find the trained LoRA file
|
| 201 |
+
lora_files = list(output_path.glob("*.safetensors"))
|
| 202 |
+
if lora_files:
|
| 203 |
+
lora_file = lora_files[-1] # Get the latest one
|
| 204 |
+
success_msg = f"β
Training Complete!\n\n"
|
| 205 |
+
success_msg += f"π¦ LoRA saved: {lora_file.name}\n"
|
| 206 |
+
success_msg += f"πΎ Size: {lora_file.stat().st_size / (1024*1024):.2f} MB\n"
|
| 207 |
+
success_msg += f"π·οΈ Use trigger word: '{trigger_word}' in your prompts"
|
| 208 |
+
return success_msg, str(lora_file)
|
| 209 |
+
else:
|
| 210 |
+
return "β οΈ Training completed but no LoRA file found", None
|
| 211 |
+
|
| 212 |
+
except subprocess.TimeoutExpired:
|
| 213 |
+
return "β Training timeout (> 1 hour). Try reducing steps.", None
|
| 214 |
+
except Exception as e:
|
| 215 |
+
return f"β Training error: {str(e)}", None
|
| 216 |
+
|
| 217 |
+
# Gradio Interface
|
| 218 |
+
with gr.Blocks(title="Z-Image LoRA Trainer", theme=gr.themes.Soft()) as demo:
|
| 219 |
+
gr.Markdown("""
|
| 220 |
+
# π¨ Z-Image LoRA Trainer
|
| 221 |
+
|
| 222 |
+
Train custom LoRA models for Z-Image-Base (6B parameter model)
|
| 223 |
+
|
| 224 |
+
**Quick Start:**
|
| 225 |
+
1. Upload 10-50 images of your subject
|
| 226 |
+
2. Enter a trigger word (e.g., "mycharacter", "mystyle")
|
| 227 |
+
3. Click Train
|
| 228 |
+
4. Download your LoRA when complete
|
| 229 |
+
|
| 230 |
+
β οΈ **Note:** Training takes 10-30 minutes depending on steps. Don't close this tab!
|
| 231 |
+
""")
|
| 232 |
+
|
| 233 |
+
# GPU Status
|
| 234 |
+
gpu_status = gr.Textbox(label="GPU Status", value=check_gpu(), interactive=False)
|
| 235 |
+
|
| 236 |
+
with gr.Tab("π€ Upload Dataset"):
|
| 237 |
+
with gr.Row():
|
| 238 |
+
with gr.Column():
|
| 239 |
+
file_input = gr.Files(
|
| 240 |
+
label="Upload Images (10-50 recommended)",
|
| 241 |
+
file_types=["image"],
|
| 242 |
+
file_count="multiple"
|
| 243 |
+
)
|
| 244 |
+
dataset_name_input = gr.Textbox(
|
| 245 |
+
label="Dataset Name",
|
| 246 |
+
placeholder="my_dataset",
|
| 247 |
+
value="my_dataset"
|
| 248 |
+
)
|
| 249 |
+
trigger_word_input = gr.Textbox(
|
| 250 |
+
label="Trigger Word (optional but recommended)",
|
| 251 |
+
placeholder="e.g., mycharacter, mystyle",
|
| 252 |
+
info="A unique word to activate your LoRA"
|
| 253 |
+
)
|
| 254 |
+
upload_btn = gr.Button("π€ Upload Dataset", variant="primary", size="lg")
|
| 255 |
+
|
| 256 |
+
with gr.Column():
|
| 257 |
+
upload_status = gr.Textbox(label="Upload Status", lines=8)
|
| 258 |
+
dataset_path_state = gr.Textbox(label="Dataset Path", visible=False)
|
| 259 |
+
dataset_ready = gr.Textbox(label="Ready to Train", interactive=False)
|
| 260 |
+
|
| 261 |
+
with gr.Tab("π Train LoRA"):
|
| 262 |
+
with gr.Row():
|
| 263 |
+
with gr.Column():
|
| 264 |
+
project_name_input = gr.Textbox(
|
| 265 |
+
label="Project Name",
|
| 266 |
+
placeholder="my_lora",
|
| 267 |
+
value="my_lora"
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
gr.Markdown("### Training Settings")
|
| 271 |
+
|
| 272 |
+
steps_input = gr.Slider(
|
| 273 |
+
label="Training Steps",
|
| 274 |
+
minimum=100,
|
| 275 |
+
maximum=3000,
|
| 276 |
+
value=1000,
|
| 277 |
+
step=100,
|
| 278 |
+
info="More steps = better quality but slower. Start with 1000."
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
learning_rate_input = gr.Slider(
|
| 282 |
+
label="Learning Rate",
|
| 283 |
+
minimum=0.00001,
|
| 284 |
+
maximum=0.001,
|
| 285 |
+
value=0.0001,
|
| 286 |
+
step=0.00001,
|
| 287 |
+
info="Default 0.0001 works well for most cases"
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
lora_rank_input = gr.Slider(
|
| 291 |
+
label="LoRA Rank",
|
| 292 |
+
minimum=4,
|
| 293 |
+
maximum=128,
|
| 294 |
+
value=16,
|
| 295 |
+
step=4,
|
| 296 |
+
info="Higher = more detail but larger file. 16 is balanced."
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
resolution_input = gr.Radio(
|
| 300 |
+
label="Resolution",
|
| 301 |
+
choices=[512, 768, 1024],
|
| 302 |
+
value=1024,
|
| 303 |
+
info="Z-Image native resolution is 1024x1024"
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
train_btn = gr.Button("π Start Training", variant="primary", size="lg")
|
| 307 |
+
|
| 308 |
+
with gr.Column():
|
| 309 |
+
training_status = gr.Textbox(label="Training Status", lines=15)
|
| 310 |
+
lora_output = gr.File(label="Download Trained LoRA")
|
| 311 |
+
|
| 312 |
+
with gr.Tab("βΉοΈ Help"):
|
| 313 |
+
gr.Markdown("""
|
| 314 |
+
## π How to Use
|
| 315 |
+
|
| 316 |
+
### Step 1: Prepare Your Images
|
| 317 |
+
- **10-50 images** of your subject (more is better for complex subjects)
|
| 318 |
+
- **Consistent subject** across images
|
| 319 |
+
- **Good variety** in poses, angles, lighting
|
| 320 |
+
- **High quality** photos (clear, well-lit)
|
| 321 |
+
|
| 322 |
+
### Step 2: Upload Dataset
|
| 323 |
+
- Choose a descriptive **dataset name**
|
| 324 |
+
- Add a **trigger word** (e.g., "sks person", "mystyle")
|
| 325 |
+
- Upload your images
|
| 326 |
+
|
| 327 |
+
### Step 3: Configure Training
|
| 328 |
+
- **Project name**: Name for your LoRA
|
| 329 |
+
- **Steps**:
|
| 330 |
+
- 500-1000 for simple subjects
|
| 331 |
+
- 1000-2000 for complex subjects/styles
|
| 332 |
+
- **Learning rate**: Keep default (0.0001)
|
| 333 |
+
- **LoRA Rank**: 16 is good for most cases
|
| 334 |
+
|
| 335 |
+
### Step 4: Train
|
| 336 |
+
- Click "Start Training"
|
| 337 |
+
- Wait 10-30 minutes (don't close tab)
|
| 338 |
+
- Download your LoRA when complete
|
| 339 |
+
|
| 340 |
+
### Step 5: Use Your LoRA
|
| 341 |
+
- Load in ComfyUI, Automatic1111, or other Z-Image tools
|
| 342 |
+
- Use your trigger word in prompts
|
| 343 |
+
- Example: "a photo of [trigger_word] in a forest"
|
| 344 |
+
|
| 345 |
+
## π― Tips for Best Results
|
| 346 |
+
|
| 347 |
+
- **Good dataset** = good results
|
| 348 |
+
- **Consistent subject** across images
|
| 349 |
+
- **Unique trigger word** (not common words)
|
| 350 |
+
- **Start with 1000 steps**, adjust if needed
|
| 351 |
+
- **Don't overtrain** (if quality decreases, reduce steps)
|
| 352 |
+
|
| 353 |
+
## β οΈ Troubleshooting
|
| 354 |
+
|
| 355 |
+
**Training fails with OOM error:**
|
| 356 |
+
- Reduce resolution to 768 or 512
|
| 357 |
+
- Use fewer steps
|
| 358 |
+
- Upload fewer images
|
| 359 |
+
|
| 360 |
+
**LoRA doesn't look like subject:**
|
| 361 |
+
- Upload more images (20-30+)
|
| 362 |
+
- Increase steps to 1500-2000
|
| 363 |
+
- Ensure images are consistent
|
| 364 |
+
|
| 365 |
+
**LoRA is too strong/weak:**
|
| 366 |
+
- Adjust LoRA weight in your inference tool (0.5-1.5)
|
| 367 |
+
|
| 368 |
+
## π Resources
|
| 369 |
+
|
| 370 |
+
- **Z-Image Model**: [Tongyi-MAI/Z-Image-Base](https://huggingface.co/Tongyi-MAI/Z-Image-Base)
|
| 371 |
+
- **AI Toolkit**: [github.com/ostris/ai-toolkit](https://github.com/ostris/ai-toolkit)
|
| 372 |
+
- **Training Adapter**: [ostris/zimage_turbo_training_adapter](https://huggingface.co/ostris/zimage_turbo_training_adapter)
|
| 373 |
+
""")
|
| 374 |
+
|
| 375 |
+
# Event handlers
|
| 376 |
+
upload_btn.click(
|
| 377 |
+
fn=upload_and_prepare_dataset,
|
| 378 |
+
inputs=[file_input, dataset_name_input, trigger_word_input],
|
| 379 |
+
outputs=[upload_status, dataset_path_state, dataset_ready]
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
train_btn.click(
|
| 383 |
+
fn=train_lora,
|
| 384 |
+
inputs=[
|
| 385 |
+
dataset_path_state,
|
| 386 |
+
project_name_input,
|
| 387 |
+
trigger_word_input,
|
| 388 |
+
steps_input,
|
| 389 |
+
learning_rate_input,
|
| 390 |
+
lora_rank_input,
|
| 391 |
+
resolution_input
|
| 392 |
+
],
|
| 393 |
+
outputs=[training_status, lora_output]
|
| 394 |
+
)
|
| 395 |
+
|
| 396 |
+
if __name__ == "__main__":
|
| 397 |
+
demo.launch()
|