Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,774 Bytes
05d6e12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 |
import os
import random
import sys
import time
import librosa
import numpy as np
import soundfile
import torch
from torch.utils.data import Dataset
from tqdm import tqdm
from onsets_and_frames import constants
from onsets_and_frames.constants import DEFAULT_DEVICE, N_KEYS, SAMPLE_RATE
from onsets_and_frames.mel import melspectrogram
from onsets_and_frames.midi_utils import (
midi_to_frames,
save_midi_alignments_and_predictions,
)
from onsets_and_frames.utils import (
get_diff,
get_logger,
get_peaks,
shift_label,
smooth_labels,
)
class EMDATASET(Dataset):
def __init__(
self,
audio_path="NoteEM_audio",
tsv_path="NoteEM_tsv",
labels_path="NoteEm_labels",
groups=None,
sequence_length=None,
seed=42,
device=DEFAULT_DEVICE,
instrument_map=None,
update_instruments=False,
transcriber=None,
conversion_map=None,
pitch_shift=True,
pitch_shift_limit=5,
keep_eval_files=False,
n_eval=1,
evaluation_list=None,
only_eval=False,
save_to_memory=False,
smooth_labels=False,
use_onset_mask=False,
):
# Get the dataset logger (logging system should already be initialized by train.py)
self.logger = get_logger("dataset")
self.audio_path = audio_path
self.tsv_path = tsv_path
self.labels_path = labels_path
self.sequence_length = sequence_length
self.device = device
self.random = np.random.RandomState(seed)
self.groups = groups
self.conversion_map = conversion_map
self.eval_file_list = []
self.file_list = self.files(
self.groups,
pitch_shift=pitch_shift,
keep_eval_files=keep_eval_files,
n_eval=n_eval,
evaluation_list=evaluation_list,
pitch_shift_limit=pitch_shift_limit,
)
self.save_to_memory = save_to_memory
self.smooth_labels = smooth_labels
self.use_onset_mask = use_onset_mask
self.pitch_shift_limit = pitch_shift_limit
self.logger.debug("Save to memory is %s", self.save_to_memory)
self.logger.info("len file list %d", len(self.file_list))
self.logger.info("\n\n")
if instrument_map is None:
self.get_instruments(conversion_map=conversion_map)
else:
self.instruments = instrument_map
if update_instruments:
self.add_instruments()
self.transcriber = transcriber
if only_eval:
return
self.load_pts(self.file_list)
self.data = []
self.logger.info("Reading files...")
for input_files in tqdm(self.file_list, desc="creating data list"):
flac, _ = input_files
audio_len = librosa.get_duration(path=flac)
minutes = int(np.ceil(audio_len / 60))
copies = minutes
for _ in range(copies):
self.data.append(input_files)
random.shuffle(self.data)
def flac_to_pt_path(self, flac):
pt_fname = os.path.basename(flac).replace(".flac", ".pt")
pt_path = os.path.join(self.labels_path, pt_fname)
return pt_path
def __len__(self):
return len(self.data)
def files(
self,
groups,
pitch_shift=True,
keep_eval_files=False,
n_eval=1,
evaluation_list=None,
pitch_shift_limit=5,
):
self.path = self.audio_path
tsvs_path = self.tsv_path
self.logger.info("tsv path: %s", tsvs_path)
self.logger.info("Evaluation list: %s", evaluation_list)
res = []
self.logger.info("keep eval files: %s", keep_eval_files)
self.logger.info("n eval: %d", n_eval)
for group in groups:
tsvs = os.listdir(tsvs_path + os.sep + group)
tsvs = sorted(tsvs)
if keep_eval_files and evaluation_list is None:
eval_tsvs = tsvs[:n_eval]
tsvs = tsvs[n_eval:]
elif keep_eval_files and evaluation_list is not None:
eval_tsvs_names = [
i.split("#")[0].split(".flac")[0].split(".tsv")[0]
for i in evaluation_list
]
eval_tsvs = [
i
for i in tsvs
if i.split("#")[0].split(".tsv")[0] in eval_tsvs_names
]
tsvs = [i for i in tsvs if i not in eval_tsvs]
else:
eval_tsvs = []
self.logger.info("len tsvs: %d", len(tsvs))
tsvs_names = [t.split(".tsv")[0].split("#")[0] for t in tsvs]
eval_tsvs_names = [t.split(".tsv")[0].split("#")[0] for t in eval_tsvs]
for shft in range(-5, 6):
if shft != 0 and not pitch_shift or abs(shft) > pitch_shift_limit:
continue
curr_fls_pth = self.path + os.sep + group + "#{}".format(shft)
fls = os.listdir(curr_fls_pth)
orig_files = fls
# print(f"files names before\n {fls}")
fls = [
i for i in fls if i.split("#")[0] in tsvs_names
] # in case we dont have the corresponding midi
missing_fls = [i for i in orig_files if i not in fls]
if len(missing_fls) > 0:
self.logger.warning("missing files: %s", missing_fls)
fls_names = [i.split("#")[0].split(".flac")[0] for i in fls]
tsvs = [
i for i in tsvs if i.split(".tsv")[0].split("#")[0] in fls_names
]
assert len(tsvs) == len(fls)
# print(f"files names after\n {fls}")
fls = sorted(fls)
if shft == 0:
eval_fls = os.listdir(curr_fls_pth)
# print(f"files names\n {eval_fls}")
eval_fls = [
i for i in eval_fls if i.split("#")[0] in eval_tsvs_names
] # in case we dont have the corresponding midi
eval_fls_names = [i.split("#")[0] for i in eval_fls]
eval_tsvs = [
i
for i in eval_tsvs
if i.split(".tsv")[0].split("#")[0] in eval_fls_names
]
assert len(eval_fls_names) == len(eval_tsvs_names)
# print(f"files names\n {eval_fls}")
eval_fls = sorted(eval_fls)
for f, t in zip(eval_fls, eval_tsvs):
self.eval_file_list.append(
(
curr_fls_pth + os.sep + f,
tsvs_path + os.sep + group + os.sep + t,
)
)
for f, t in zip(fls, tsvs):
res.append(
(
curr_fls_pth + os.sep + f,
tsvs_path + os.sep + group + os.sep + t,
)
)
for flac, tsv in res:
if (
os.path.basename(flac).split("#")[0].split(".flac")[0]
!= os.path.basename(tsv).split("#")[0].split(".tsv")[0]
):
self.logger.warning("found mismatch in the files: ")
self.logger.warning("flac: %s", os.path.basename(flac).split("#")[0])
self.logger.warning("tsv: %s", os.path.basename(tsv).split("#")[0])
self.logger.warning("please check the input files")
exit(1)
return res
def get_instruments(self, conversion_map=None):
instruments = set()
for _, f in self.file_list:
events = np.loadtxt(f, delimiter="\t", skiprows=1)
curr_instruments = set(events[:, -1])
if conversion_map is not None:
curr_instruments = {
conversion_map[c] if c in conversion_map else c
for c in curr_instruments
}
instruments = instruments.union(curr_instruments)
instruments = [int(elem) for elem in instruments if elem < 115]
if conversion_map is not None:
instruments = [i for i in instruments if i in conversion_map]
instruments = list(set(instruments))
if 0 in instruments:
piano_ind = instruments.index(0)
instruments.pop(piano_ind)
instruments.insert(0, 0)
self.instruments = instruments
self.instruments = list(
set(self.instruments) - set(range(88, 104)) - set(range(112, 150))
)
self.logger.info("Dataset instruments: %s", self.instruments)
self.logger.info("Total: %d instruments", len(self.instruments))
def add_instruments(self):
for _, f in self.file_list:
events = np.loadtxt(f, delimiter="\t", skiprows=1)
curr_instruments = set(events[:, -1])
new_instruments = curr_instruments - set(self.instruments)
self.instruments += list(new_instruments)
instruments = [int(elem) for elem in self.instruments if (elem < 115)]
self.instruments = instruments
def __getitem__(self, index):
data = self.load(*self.data[index])
# result = dict(path=data['path'])
midi_length = len(data["label"])
n_steps = self.sequence_length // constants.HOP_LENGTH
if midi_length < n_steps:
step_begin = 0
step_end = midi_length
else:
step_begin = self.random.randint(max(midi_length - n_steps, 1))
step_end = step_begin + n_steps
begin = step_begin * constants.HOP_LENGTH
end = begin + self.sequence_length
audio = (
data["audio"][begin:end].float().div_(32768.0)
) # torch.ShortTensor → float
label = data["label"][step_begin:step_end].clone() # torch.Tensor
if audio.shape[0] < self.sequence_length:
pad_amt = self.sequence_length - audio.shape[0]
audio = torch.cat([audio, torch.zeros(pad_amt, dtype=audio.dtype)], dim=0)
if label.shape[0] < n_steps:
pad_amt = n_steps - label.shape[0]
label = torch.cat(
[label, torch.zeros((pad_amt, *label.shape[1:]), dtype=label.dtype)],
dim=0,
)
audio = torch.clamp(audio, -1.0, 1.0)
result = {"path": data["path"], "audio": audio, "label": label}
if "velocity" in data:
result["velocity"] = data["velocity"][step_begin:step_end, ...]
result["velocity"] = result["velocity"].float() / 128.0
if result["label"].max() < 3:
result["onset"] = result["label"].float()
else:
result["onset"] = (result["label"] == 3).float()
result["offset"] = (result["label"] == 1).float()
result["frame"] = (result["label"] > 1).float()
if self.smooth_labels:
result["onset"] = smooth_labels(result["onset"])
if self.use_onset_mask:
if "onset_mask" in data:
result["onset_mask"] = data["onset_mask"][
step_begin:step_end, ...
].float()
else:
result["onset_mask"] = torch.ones_like(result["onset"]).float()
if "frame_mask" in data:
result["frame_mask"] = data["frame_mask"][
step_begin:step_end, ...
].float()
else:
result["frame_mask"] = torch.ones_like(result["frame"]).float()
shape = result["frame"].shape
keys = N_KEYS
new_shape = shape[:-1] + (shape[-1] // keys, keys)
result["big_frame"] = result["frame"]
result["frame"], _ = result["frame"].reshape(new_shape).max(axis=-2)
# if 'frame_mask' not in data:
# result['frame_mask'] = torch.ones_like(result['frame']).to(self.device).float()
result["big_offset"] = result["offset"]
result["offset"], _ = result["offset"].reshape(new_shape).max(axis=-2)
result["group"] = self.data[index][0].split(os.sep)[-2].split("#")[0]
return result
def load(self, audio_path, tsv_path):
if self.save_to_memory:
data = self.pts[audio_path]
else:
data = torch.load(self.flac_to_pt_path(audio_path))
if len(data["audio"].shape) > 1:
data["audio"] = (data["audio"].float().mean(dim=-1)).short()
if "label" in data:
return data
else:
piece, part = audio_path.split(os.sep)[-2:]
piece_split = piece.split("#")
if len(piece_split) == 2:
piece, shift1 = piece_split
else:
piece, shift1 = "#".join(piece_split[:2]), piece_split[-1]
part_split = part.split("#")
if len(part_split) == 2:
part, shift2 = part_split
else:
part, shift2 = "#".join(part_split[:2]), part_split[-1]
shift2, _ = shift2.split(".")
assert shift1 == shift2
shift = shift1
assert shift != 0
orig = audio_path.replace("#{}".format(shift), "#0")
if self.save_to_memory:
orig_data = self.pts[orig]
else:
orig_data = torch.load(self.flac_to_pt_path(orig))
res = {}
res["label"] = shift_label(orig_data["label"], int(shift))
res["path"] = audio_path
res["audio"] = data["audio"]
if "velocity" in orig_data:
res["velocity"] = shift_label(orig_data["velocity"], int(shift))
if "onset_mask" in orig_data:
res["onset_mask"] = shift_label(orig_data["onset_mask"], int(shift))
if "frame_mask" in orig_data:
res["frame_mask"] = shift_label(orig_data["frame_mask"], int(shift))
return res
def load_pts(self, files):
self.pts = {}
self.logger.info("loading pts...")
for flac, tsv in tqdm(files, desc="loading pts"):
# print('flac, tsv', flac, tsv)
if os.path.isfile(
self.labels_path
+ os.sep
+ flac.split(os.sep)[-1].replace(".flac", ".pt")
):
if self.save_to_memory:
self.pts[flac] = torch.load(
self.labels_path
+ os.sep
+ flac.split(os.sep)[-1].replace(".flac", ".pt")
)
else:
if flac.count("#") != 2:
self.logger.debug("two # in filename: %s", flac)
audio, sr = soundfile.read(flac, dtype="int16")
if len(audio.shape) == 2:
audio = audio.astype(float).mean(axis=1)
else:
audio = audio.astype(float)
audio = audio.astype(np.int16)
self.logger.debug("audio len: %d", len(audio))
assert sr == SAMPLE_RATE
audio = torch.ShortTensor(audio)
if "#0" not in flac:
assert "#" in flac
data = {"audio": audio}
if self.save_to_memory:
self.pts[flac] = data
torch.save(data, self.flac_to_pt_path(flac))
continue
midi = np.loadtxt(tsv, delimiter="\t", skiprows=1)
unaligned_label = midi_to_frames(
midi, self.instruments, conversion_map=self.conversion_map
)
if len(self.instruments) == 1:
unaligned_label = unaligned_label[:, -N_KEYS:]
if len(unaligned_label) < self.sequence_length // constants.HOP_LENGTH:
diff = self.sequence_length // constants.HOP_LENGTH - len(
unaligned_label
)
pad = torch.zeros(
(diff, unaligned_label.shape[1]), dtype=unaligned_label.dtype
)
unaligned_label = torch.cat((unaligned_label, pad), dim=0)
group = flac.split(os.sep)[-2].split("#")[0]
data = dict(
path=self.labels_path + os.sep + flac.split(os.sep)[-1],
audio=audio,
unaligned_label=unaligned_label,
group=group,
BON=float("inf"),
BON_VEC=np.full(unaligned_label.shape[1], float("inf")),
)
torch.save(data, self.flac_to_pt_path(flac))
if self.save_to_memory:
self.pts[flac] = data
def update_pts_counting(
self,
transcriber,
counting_window_length,
POS=1.1,
NEG=-0.001,
FRAME_POS=0.5,
to_save=None,
first=False,
update=True,
BEST_DIST=False,
peak_size=3,
BEST_DIST_VEC=False,
counting_window_hop=0,
):
self.logger.info("Updating pts...")
self.logger.info("First %s", first)
total_counting_time = 0.0 # Initialize total time for counting-based alignment
self.logger.info("POS, NEG: %s, %s", POS, NEG)
if to_save is not None:
os.makedirs(to_save, exist_ok=True)
self.logger.info("There are %d pts", len(self.pts))
update_count = 0
sys.stdout.flush()
onlt_pitch_0_files = [f for f in self.file_list if "#0" in f[0]]
for input_files in tqdm(onlt_pitch_0_files, desc="updating pts"):
flac, tsv = input_files
data = torch.load(self.flac_to_pt_path(flac))
if "unaligned_label" not in data:
self.logger.warning("No unaligned labels for %s", flac)
continue
audio_inp = data["audio"].float() / 32768.0
MAX_TIME = 5 * 60 * SAMPLE_RATE
audio_inp_len = len(audio_inp)
if audio_inp_len > MAX_TIME:
n_segments = int(np.ceil(audio_inp_len / MAX_TIME))
self.logger.debug("Long audio, splitting to %d segments", n_segments)
seg_len = MAX_TIME
onsets_preds = []
offset_preds = []
frame_preds = []
for i_s in range(n_segments):
curr = (
audio_inp[i_s * seg_len : (i_s + 1) * seg_len]
.unsqueeze(0)
.cuda()
)
curr_mel = melspectrogram(
curr.reshape(-1, curr.shape[-1])[:, :-1]
).transpose(-1, -2)
(
curr_onset_pred,
curr_offset_pred,
_,
curr_frame_pred,
curr_velocity_pred,
) = transcriber(curr_mel)
onsets_preds.append(curr_onset_pred)
offset_preds.append(curr_offset_pred)
frame_preds.append(curr_frame_pred)
onset_pred = torch.cat(onsets_preds, dim=1)
offset_pred = torch.cat(offset_preds, dim=1)
frame_pred = torch.cat(frame_preds, dim=1)
else:
audio_inp = audio_inp.unsqueeze(0).cuda()
mel = melspectrogram(
audio_inp.reshape(-1, audio_inp.shape[-1])[:, :-1]
).transpose(-1, -2)
onset_pred, offset_pred, _, frame_pred, _ = transcriber(mel)
self.logger.debug("Done predicting.")
# We assume onset predictions are of length N_KEYS * (len(instruments) + 1),
# first N_KEYS classes are the first instrument, next N_KEYS classes are the next instrument, etc.,
# and last N_KEYS classes are for pitch regardless of instrument
# Currently, frame and offset predictions are only N_KEYS classes.
onset_pred = onset_pred.detach().squeeze().cpu()
frame_pred = frame_pred.detach().squeeze().cpu()
PEAK_SIZE = peak_size
self.logger.debug("PEAK_SIZE: %d", PEAK_SIZE)
# we peak peak the onset prediction to only keep local maximum onsets
if peak_size > 0:
peaks = get_peaks(
onset_pred, PEAK_SIZE
) # we only want local peaks, in a 7-frame neighborhood, 3 to each side.
onset_pred[~peaks] = 0
unaligned_onsets = (data["unaligned_label"] == 3).float().numpy()
onset_pred_np = onset_pred.numpy()
frame_pred_np = frame_pred.numpy()
pred_bag_of_notes = (onset_pred_np[:, -N_KEYS:] >= 0.5).sum(axis=0)
gt_bag_of_notes = unaligned_onsets[:, -N_KEYS:].astype(bool).sum(axis=0)
bon_dist = (((pred_bag_of_notes - gt_bag_of_notes) ** 2).sum()) ** 0.5
pred_bag_of_notes_with_inst = (onset_pred_np >= 0.5).sum(axis=0)
gt_bag_of_notes_with_inst = unaligned_onsets.astype(bool).sum(axis=0)
bon_dist_vec = np.abs(
pred_bag_of_notes_with_inst - gt_bag_of_notes_with_inst
)
bon_dist /= gt_bag_of_notes.sum()
self.logger.debug("bag of notes dist: %f", bon_dist)
####
aligned_onsets = np.zeros(onset_pred_np.shape, dtype=bool)
aligned_frames = np.zeros(onset_pred_np.shape, dtype=bool)
# This block is the main difference between the counting approach and the DTW approach.
# In the counting approach we label the audio by counting note onsets: For each onset pitch class,
# denote by K the number of times it occurs in the unaligned label. We simply take the K highest local
# peaks predicted by the current model.
# Split unaligned onsets into chunks of size counting_window_length
self.logger.debug(
"unaligned onsets shape: %s, counting window length: %d, counting window hop: %d",
unaligned_onsets.shape,
counting_window_length,
counting_window_hop,
)
assert counting_window_hop <= counting_window_length
if counting_window_hop == 0:
counting_window_hop = counting_window_length
num_chunks = (
1
if counting_window_length == 0
else int(np.ceil(len(unaligned_onsets) / counting_window_hop))
)
self.logger.debug("number of chunks: %d", num_chunks)
start_time = time.time()
for chunk_idx in range(num_chunks):
start_idx = chunk_idx * counting_window_hop
if counting_window_length == 0:
end_idx = max(len(unaligned_onsets), len(onset_pred_np))
else:
end_idx = min(
start_idx + counting_window_length, len(unaligned_onsets)
)
chunk_onsets = unaligned_onsets[start_idx:end_idx]
chunk_onsets_count = (
(data["unaligned_label"][start_idx:end_idx, :] == 3)
.sum(dim=0)
.numpy()
)
for f, f_count in enumerate(chunk_onsets_count):
if f_count == 0:
continue
f_most_likely = np.sort(
onset_pred_np[start_idx:end_idx, f].argsort()[::-1][:f_count]
)
f_most_likely += start_idx # Adjust indices to the original size
aligned_onsets[f_most_likely, f] = 1
f_unaligned = chunk_onsets[:, f].nonzero()
assert len(f_unaligned) == 1
f_unaligned = f_unaligned[0]
counting_duration = time.time() - start_time
total_counting_time += counting_duration
self.logger.debug(
"Counting alignment for file '%s' took %.2f seconds.",
flac,
counting_duration,
)
# Pseudo labels, Pos bigger than 1 is equivalent to not using pseudo labels
pseudo_onsets = (onset_pred_np >= POS) & (~aligned_onsets)
onset_label = np.maximum(pseudo_onsets, aligned_onsets)
# in this project we do not train frame stack but we calculate the labeels anyways
pseudo_frames = np.zeros(pseudo_onsets.shape, dtype=pseudo_onsets.dtype)
pseudo_offsets = np.zeros(pseudo_onsets.shape, dtype=pseudo_onsets.dtype)
for t, f in zip(*onset_label.nonzero()):
t_off = t
while (
t_off < len(pseudo_frames)
and frame_pred[t_off, f % N_KEYS] >= FRAME_POS
):
t_off += 1
pseudo_frames[t:t_off, f] = 1
if t_off < len(pseudo_offsets):
pseudo_offsets[t_off, f] = 1
frame_label = np.maximum(pseudo_frames, aligned_frames)
offset_label = get_diff(frame_label, offset=True)
label = np.maximum(2 * frame_label, offset_label)
label = np.maximum(3 * onset_label, label).astype(np.uint8)
if to_save is not None:
save_midi_alignments_and_predictions(
to_save,
data["path"],
self.instruments,
aligned_onsets,
aligned_frames,
onset_pred_np,
frame_pred_np,
prefix="",
group=data["group"],
)
prev_bon_dist = data.get("BON", float("inf"))
prev_bon_dist_vec = data.get("BON_VEC", None)
if update:
if BEST_DIST_VEC:
self.logger.debug("Updated Labels")
if prev_bon_dist_vec is None:
raise ValueError(
"BEST_DIST_VEC is True but no previous BON_VEC found"
)
prev_label = data["label"]
new_label = torch.from_numpy(label).byte()
if first:
prev_label = new_label
update_count += 1
else:
updated_flag = False
num_pitches_updated = 0
for k in range(prev_label.shape[1]):
if prev_bon_dist_vec[k] > bon_dist_vec[k]:
prev_label[:, k] = new_label[:, k]
prev_bon_dist_vec[k] = bon_dist_vec[k]
num_pitches_updated += 1
updated_flag = True
if updated_flag:
update_count += 1
self.logger.debug("Updated %d pitches", num_pitches_updated)
data["label"] = prev_label
data["BON_VEC"] = prev_bon_dist_vec
self.logger.debug("saved updated pt")
torch.save(
data,
self.labels_path
+ os.sep
+ flac.split(os.sep)[-1]
.replace(".flac", ".pt")
.replace(".mp3", ".pt"),
)
elif not BEST_DIST or bon_dist < prev_bon_dist:
update_count += 1
self.logger.debug("Updated Labels")
data["label"] = torch.from_numpy(label).byte()
data["BON"] = bon_dist
self.logger.debug("saved updated pt")
torch.save(
data,
self.labels_path
+ os.sep
+ flac.split(os.sep)[-1]
.replace(".flac", ".pt")
.replace(".mp3", ".pt"),
)
if bon_dist < prev_bon_dist:
self.logger.debug(
"Bag of notes distance improved from %f to %f",
prev_bon_dist,
bon_dist,
)
data["BON"] = bon_dist
if to_save is not None and BEST_DIST:
os.makedirs(to_save + "/BEST_BON", exist_ok=True)
save_midi_alignments_and_predictions(
to_save + "/BEST_BON",
data["path"],
self.instruments,
aligned_onsets,
aligned_frames,
onset_pred_np,
frame_pred_np,
prefix="BEST_BON",
group=data["group"],
use_time=False,
)
self.logger.info(
"Updated %d pts out of %d", update_count, len(onlt_pitch_0_files)
)
self.logger.info(
"Total counting alignment time for all files: %.2f seconds.", total_counting_time
)
|