Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,216 Bytes
05d6e12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
"""
Hugging Face Hub-compatible wrapper for CountEM music transcription models.
"""
from pathlib import Path
from typing import Union, Tuple
import numpy as np
import torch
import soundfile as sf
from huggingface_hub import PyTorchModelHubMixin
from onsets_and_frames.transcriber import OnsetsAndFrames
from onsets_and_frames.mel import MelSpectrogram
from onsets_and_frames.midi_utils import frames2midi
from onsets_and_frames.constants import (
N_MELS,
MIN_MIDI,
MAX_MIDI,
HOP_LENGTH,
SAMPLE_RATE,
WINDOW_LENGTH,
MEL_FMIN,
MEL_FMAX,
)
class CountEMModel(
OnsetsAndFrames,
PyTorchModelHubMixin,
# Optional metadata that gets pushed to model card
library_name="countem",
tags=["audio", "music-transcription", "automatic-music-transcription", "midi"],
license="cc-by-4.0",
repo_url="https://github.com/Yoni-Yaffe/count-the-notes",
paper_url="https://arxiv.org/abs/2511.14250",
):
"""
Hugging Face Hub-compatible wrapper for CountEM automatic music transcription models.
This model performs automatic music transcription (AMT) from audio to MIDI.
It uses the Onsets & Frames architecture trained with the CountEM framework,
which enables training with weak, unordered note count histograms.
Example usage:
```python
from onsets_and_frames.hf_model import CountEMModel
import soundfile as sf
# Load model from Hub
model = CountEMModel.from_pretrained("Yoni-Yaffe/countem-musicnet")
# Load audio (must be 16kHz)
audio, sr = sf.read("audio.flac")
assert sr == 16000, "Audio must be 16kHz"
# Transcribe to MIDI
model.transcribe_to_midi(audio, "output.mid")
```
Args:
model_complexity: Complexity multiplier for the model (default: 64)
onset_complexity: Complexity multiplier for onset stack (default: 1.5)
n_instruments: Number of instruments to transcribe (default: 1)
"""
def __init__(
self,
model_complexity: int = 64,
onset_complexity: float = 1.5,
n_instruments: int = 1,
**kwargs
):
# Initialize the base OnsetsAndFrames model
n_keys = MAX_MIDI - MIN_MIDI + 1
OnsetsAndFrames.__init__(
self,
input_features=N_MELS,
output_features=n_keys,
model_complexity=model_complexity,
onset_complexity=onset_complexity,
n_instruments=n_instruments,
)
# Store config for HF Hub
self.config = {
"model_complexity": model_complexity,
"onset_complexity": onset_complexity,
"n_instruments": n_instruments,
"n_mels": N_MELS,
"n_keys": n_keys,
"sample_rate": SAMPLE_RATE,
"hop_length": HOP_LENGTH,
}
# Add mel spectrogram as a submodule for proper device management
# This ensures the mel transform moves with the model when calling .to(device)
self.melspectrogram = MelSpectrogram(
n_mels=N_MELS,
sample_rate=SAMPLE_RATE,
filter_length=WINDOW_LENGTH,
hop_length=HOP_LENGTH,
mel_fmin=MEL_FMIN,
mel_fmax=MEL_FMAX,
)
def forward(self, audio: Union[np.ndarray, torch.Tensor]):
"""
Forward pass that accepts raw audio waveforms.
Unlike the parent OnsetsAndFrames which expects mel spectrograms,
this forward method accepts raw audio and converts it internally.
Args:
audio: Raw audio waveform, shape (batch, n_samples) or (n_samples,)
Should be normalized to [-1, 1] or will be normalized automatically
Returns:
Tuple of (onset_pred, offset_pred, activation_pred, frame_pred, velocity_pred)
"""
# Convert to torch tensor if needed
if isinstance(audio, np.ndarray):
audio = torch.from_numpy(audio).float()
# Ensure audio is in range [-1, 1]
if audio.dtype == torch.int16:
audio = audio.float() / 32768.0
elif audio.max() > 1.0 or audio.min() < -1.0:
audio = audio / max(abs(audio.max()), abs(audio.min()))
# Add batch dimension if needed
if audio.dim() == 1:
audio = audio.unsqueeze(0)
device = next(self.parameters()).device
audio = audio.to(device)
# Remove last sample to fix frame count mismatch
audio = audio[:, :-1]
mel = self.melspectrogram(audio)
# Transpose to (batch, time, features) format expected by parent model
mel = mel.transpose(-1, -2)
return super().forward(mel)
@torch.no_grad()
def transcribe(
self,
audio: Union[np.ndarray, torch.Tensor],
onset_threshold: float = 0.5,
frame_threshold: float = 0.5,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""
Transcribe audio to note predictions.
Automatically handles long audio by splitting into segments (max 5 minutes each)
to avoid memory issues.
Args:
audio: Audio waveform, shape (n_samples,), normalized to [-1, 1]
onset_threshold: Threshold for onset detection (default: 0.5)
frame_threshold: Threshold for frame detection (default: 0.5)
Returns:
Tuple of (onset_pred, offset_pred, activation_pred, frame_pred, velocity_pred)
All are numpy arrays of shape (n_frames, 88) except velocity which may vary
"""
self.eval()
# Convert to torch tensor if needed
if isinstance(audio, np.ndarray):
audio = torch.from_numpy(audio).float()
# Ensure audio is 1D (convert stereo to mono if needed)
if audio.dim() > 1:
# If stereo or multi-channel, take mean across channels
audio = audio.mean(dim=-1 if audio.shape[-1] <=2 else 0)
# Normalize audio
if audio.dtype == torch.int16:
audio = audio.float() / 32768.0
elif audio.max() > 1.0 or audio.min() < -1.0:
audio = audio / max(abs(audio.max()), abs(audio.min()))
device = next(self.parameters()).device
audio = audio.to(device)
# Handle long audio by segmenting
MAX_TIME = 5 * 60 * SAMPLE_RATE # 5 minutes
audio_len = len(audio)
if audio_len > MAX_TIME:
# Split into segments
n_segments = int(np.ceil(audio_len / MAX_TIME))
seg_len = MAX_TIME
onset_preds = []
offset_preds = []
activation_preds = []
frame_preds = []
velocity_preds = []
for i_s in range(n_segments):
start = i_s * seg_len
end = min((i_s + 1) * seg_len, audio_len)
segment = audio[start:end]
# Forward pass on segment
onset_seg, offset_seg, activation_seg, frame_seg, velocity_seg = self(segment)
onset_preds.append(onset_seg)
offset_preds.append(offset_seg)
activation_preds.append(activation_seg)
frame_preds.append(frame_seg)
velocity_preds.append(velocity_seg)
# Concatenate along time dimension (dim=1)
onset_pred = torch.cat(onset_preds, dim=1)
offset_pred = torch.cat(offset_preds, dim=1)
activation_pred = torch.cat(activation_preds, dim=1)
frame_pred = torch.cat(frame_preds, dim=1)
velocity_pred = torch.cat(velocity_preds, dim=1)
else:
# Short audio, process directly
onset_pred, offset_pred, activation_pred, frame_pred, velocity_pred = self(audio)
# Convert to numpy and remove batch dimension
onset_pred = onset_pred.squeeze(0).cpu().numpy()
offset_pred = offset_pred.squeeze(0).cpu().numpy()
activation_pred = activation_pred.squeeze(0).cpu().numpy()
frame_pred = frame_pred.squeeze(0).cpu().numpy()
velocity_pred = velocity_pred.squeeze(0).cpu().numpy()
return onset_pred, offset_pred, activation_pred, frame_pred, velocity_pred
def transcribe_to_midi(
self,
audio: Union[np.ndarray, torch.Tensor, str, Path],
output_path: Union[str, Path],
onset_threshold: float = 0.5,
frame_threshold: float = 0.5,
) -> None:
"""
Transcribe audio to MIDI file.
Args:
audio: Audio waveform, numpy array, torch tensor, or path to audio file
output_path: Path to save MIDI file
onset_threshold: Threshold for onset detection (default: 0.5)
frame_threshold: Threshold for frame detection (default: 0.5)
"""
# Load audio from file if path is provided
if isinstance(audio, (str, Path)):
audio, sr = sf.read(audio, dtype="float32")
if sr != SAMPLE_RATE:
raise ValueError(
f"Audio must be {SAMPLE_RATE}Hz, got {sr}Hz. "
f"Please resample to {SAMPLE_RATE}Hz first."
)
# Get predictions
onset_pred, offset_pred, _, frame_pred, velocity_pred = self.transcribe(
audio, onset_threshold, frame_threshold
)
# Default instrument mapping (piano)
inst_mapping = {0: 0} # instrument 0 -> MIDI program 0 (Acoustic Grand Piano)
# Convert predictions to MIDI
frames2midi(
str(output_path),
onset_pred,
frame_pred,
velocity_pred,
onset_threshold=onset_threshold,
frame_threshold=frame_threshold,
scaling=HOP_LENGTH / SAMPLE_RATE,
inst_mapping=inst_mapping,
)
def to_legacy(self) -> OnsetsAndFrames:
"""
Convert this HuggingFace-compatible model to a legacy OnsetsAndFrames instance.
This is useful for:
- Fine-tuning models downloaded from HuggingFace Hub using existing training code
- Using HF models with existing inference scripts that expect OnsetsAndFrames
The legacy model will use the global melspectrogram from mel.py instead of
the instance-specific one in this model.
Returns:
OnsetsAndFrames instance with copied weights
"""
# Create legacy model with same architecture
legacy_model = OnsetsAndFrames(
input_features=self.config['n_mels'],
output_features=self.config['n_keys'],
model_complexity=self.config['model_complexity'],
onset_complexity=self.config['onset_complexity'],
n_instruments=self.config['n_instruments']
)
# Get the state dict and filter out melspectrogram keys
state_dict = self.state_dict()
legacy_state_dict = {k: v for k, v in state_dict.items() if not k.startswith('melspectrogram.')}
# Copy state dict (only model weights, not mel spectrogram)
# The legacy model will use the global melspectrogram
legacy_model.load_state_dict(legacy_state_dict)
return legacy_model
@classmethod
def from_legacy_checkpoint(
cls,
checkpoint_path: Union[str, Path],
**kwargs
) -> "CountEMModel":
"""
Load a model from a legacy checkpoint (saved with torch.save(model)).
This is useful for converting old checkpoints to the new HF-compatible format.
Args:
checkpoint_path: Path to the legacy .pt checkpoint file
**kwargs: Additional arguments for model initialization
Returns:
CountEMModel instance with loaded weights
"""
# Load the legacy checkpoint
legacy_model = torch.load(checkpoint_path, map_location="cpu")
# Extract configuration from the loaded model
# Infer model_complexity from the model structure
# ConvStack.cnn[0] is the first Conv2d layer with out_channels = model_size // 16
first_conv_channels = legacy_model.offset_stack[0].cnn[0].out_channels
model_size = first_conv_channels * 16
model_complexity = model_size // 16
# Infer onset_complexity
onset_first_conv_channels = legacy_model.onset_stack[0].cnn[0].out_channels
onset_model_size = onset_first_conv_channels * 16
onset_complexity = onset_model_size / model_size
# Infer n_instruments from output layer
# onset_stack[2] is the Linear layer
onset_out_features = legacy_model.onset_stack[2].out_features
n_keys = MAX_MIDI - MIN_MIDI + 1
n_instruments = onset_out_features // n_keys
# Create new model with the same configuration
model = cls(
model_complexity=model_complexity,
onset_complexity=onset_complexity,
n_instruments=n_instruments,
**kwargs
)
# Copy the state dict (strict=False because new model has melspectrogram submodule)
model.load_state_dict(legacy_model.state_dict(), strict=False)
return model
|