File size: 9,277 Bytes
05d6e12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import torch
import torch.nn.functional as F
from torch import nn

from onsets_and_frames.constants import MAX_MIDI, MIN_MIDI, N_KEYS

from .lstm import BiLSTM
from .mel import melspectrogram


class ConvStack(nn.Module):
    def __init__(self, input_features, output_features):
        super().__init__()

        # input is batch_size * 1 channel * frames * input_features
        self.cnn = nn.Sequential(
            # layer 0
            nn.Conv2d(1, output_features // 16, (3, 3), padding=1),
            nn.BatchNorm2d(output_features // 16),
            nn.ReLU(),
            # layer 1
            nn.Conv2d(output_features // 16, output_features // 16, (3, 3), padding=1),
            nn.BatchNorm2d(output_features // 16),
            nn.ReLU(),
            # layer 2
            nn.MaxPool2d((1, 2)),
            nn.Dropout(0.25),
            nn.Conv2d(output_features // 16, output_features // 8, (3, 3), padding=1),
            nn.BatchNorm2d(output_features // 8),
            nn.ReLU(),
            # layer 3
            nn.MaxPool2d((1, 2)),
            nn.Dropout(0.25),
        )
        self.fc = nn.Sequential(
            nn.Linear((output_features // 8) * (input_features // 4), output_features),
            nn.Dropout(0.5),
        )

    def forward(self, mel):
        x = mel.view(mel.size(0), 1, mel.size(1), mel.size(2))
        x = self.cnn(x)
        x = x.transpose(1, 2).flatten(-2)
        x = self.fc(x)
        return x


class OnsetsAndFrames(nn.Module):
    def __init__(
        self,
        input_features,
        output_features,
        model_complexity=48,
        onset_complexity=1,
        n_instruments=13,
    ):
        nn.Module.__init__(self)
        model_size = model_complexity * 16
        sequence_model = lambda input_size, output_size: BiLSTM(
            input_size, output_size // 2
        )

        onset_model_size = int(onset_complexity * model_size)
        self.onset_stack = nn.Sequential(
            ConvStack(input_features, onset_model_size),
            sequence_model(onset_model_size, onset_model_size),
            nn.Linear(onset_model_size, output_features * n_instruments),
            nn.Sigmoid(),
        )
        self.offset_stack = nn.Sequential(
            ConvStack(input_features, model_size),
            sequence_model(model_size, model_size),
            nn.Linear(model_size, output_features),
            nn.Sigmoid(),
        )
        self.frame_stack = nn.Sequential(
            ConvStack(input_features, model_size),
            nn.Linear(model_size, output_features),
            nn.Sigmoid(),
        )
        self.combined_stack = nn.Sequential(
            sequence_model(output_features * 3, model_size),
            nn.Linear(model_size, output_features),
            nn.Sigmoid(),
        )
        self.velocity_stack = nn.Sequential(
            ConvStack(input_features, model_size),
            nn.Linear(model_size, output_features * n_instruments),
        )

    def forward(self, mel):
        onset_pred = self.onset_stack(mel)
        offset_pred = self.offset_stack(mel)
        activation_pred = self.frame_stack(mel)

        onset_detached = onset_pred.detach()
        shape = onset_detached.shape
        keys = MAX_MIDI - MIN_MIDI + 1
        new_shape = shape[:-1] + (shape[-1] // keys, keys)
        onset_detached = onset_detached.reshape(new_shape)
        onset_detached, _ = onset_detached.max(axis=-2)

        offset_detached = offset_pred.detach()

        combined_pred = torch.cat(
            [onset_detached, offset_detached, activation_pred], dim=-1
        )
        frame_pred = self.combined_stack(combined_pred)
        velocity_pred = self.velocity_stack(mel)
        return onset_pred, offset_pred, activation_pred, frame_pred, velocity_pred

    def run_on_batch(
        self,
        batch,
        parallel_model=None,
        positive_weight=2.0,
        inv_positive_weight=2.0,
        with_onset_mask=False,
    ):
        audio_label = batch["audio"]

        onset_label = batch["onset"]
        offset_label = batch["offset"]
        frame_label = batch["frame"]
        if "velocity" in batch:
            velocity_label = batch["velocity"]
        mel = melspectrogram(
            audio_label.reshape(-1, audio_label.shape[-1])[:, :-1]
        ).transpose(-1, -2)

        if not parallel_model:
            onset_pred, offset_pred, _, frame_pred, velocity_pred = self(mel)
        else:
            onset_pred, offset_pred, _, frame_pred, velocity_pred = parallel_model(mel)

        predictions = {
            "onset": onset_pred.reshape(*onset_label.shape),
            "offset": offset_pred.reshape(*offset_label.shape),
            "frame": frame_pred.reshape(*frame_label.shape),
            # 'velocity': velocity_pred.reshape(*velocity_label.shape)
        }

        if "velocity" in batch:
            predictions["velocity"] = velocity_pred.reshape(*velocity_label.shape)

        losses = {
            "loss/onset": F.binary_cross_entropy(
                predictions["onset"], onset_label, reduction="none"
            ),
            "loss/offset": F.binary_cross_entropy(
                predictions["offset"], offset_label, reduction="none"
            ),
            "loss/frame": F.binary_cross_entropy(
                predictions["frame"], frame_label, reduction="none"
            ),
            # 'loss/velocity': self.velocity_loss(predictions['velocity'], velocity_label, onset_label)
        }
        if "velocity" in batch:
            losses["loss/velocity"] = self.velocity_loss(
                predictions["velocity"], velocity_label, onset_label
            )

        onset_mask = 1.0 * onset_label
        onset_mask[..., :-N_KEYS] *= positive_weight - 1
        onset_mask[..., -N_KEYS:] *= inv_positive_weight - 1
        onset_mask += 1
        if with_onset_mask:
            if "onset_mask" in batch:
                onset_mask = onset_mask * batch["onset_mask"]
        # if 'onset_mask' in batch:
        #     onset_mask += batch['onset_mask']

        offset_mask = 1.0 * offset_label
        offset_positive_weight = 2.0
        offset_mask *= offset_positive_weight - 1
        offset_mask += 1.0

        frame_mask = 1.0 * frame_label
        frame_positive_weight = 2.0
        frame_mask *= frame_positive_weight - 1
        frame_mask += 1.0

        for loss_key, mask in zip(
            ["onset", "offset", "frame"], [onset_mask, offset_mask, frame_mask]
        ):
            losses["loss/" + loss_key] = (mask * losses["loss/" + loss_key]).mean()

        return predictions, losses

    def velocity_loss(self, velocity_pred, velocity_label, onset_label):
        denominator = onset_label.sum()
        if denominator.item() == 0:
            return denominator
        else:
            return (
                onset_label * (velocity_label - velocity_pred) ** 2
            ).sum() / denominator


#   same implementation as OnsetsAndFrames, but with only onset stack
class OnsetsNoFrames(nn.Module):
    def __init__(
        self,
        input_features,
        output_features,
        model_complexity=48,
        onset_complexity=1,
        n_instruments=13,
    ):
        nn.Module.__init__(self)
        model_size = model_complexity * 16
        sequence_model = lambda input_size, output_size: BiLSTM(
            input_size, output_size // 2
        )

        onset_model_size = int(onset_complexity * model_size)
        self.onset_stack = nn.Sequential(
            ConvStack(input_features, onset_model_size),
            sequence_model(onset_model_size, onset_model_size),
            nn.Linear(onset_model_size, output_features * n_instruments),
            nn.Sigmoid(),
        )

    def forward(self, mel):
        onset_pred = self.onset_stack(mel)

        onset_detached = onset_pred.detach()
        shape = onset_detached.shape
        keys = MAX_MIDI - MIN_MIDI + 1
        new_shape = shape[:-1] + (shape[-1] // keys, keys)
        onset_detached = onset_detached.reshape(new_shape)
        onset_detached, _ = onset_detached.max(axis=-2)

        return onset_pred

    def run_on_batch(
        self,
        batch,
        parallel_model=None,
        positive_weight=2.0,
        inv_positive_weight=2.0,
        with_onset_mask=False,
    ):
        audio_label = batch["audio"]

        onset_label = batch["onset"]
        mel = melspectrogram(
            audio_label.reshape(-1, audio_label.shape[-1])[:, :-1]
        ).transpose(-1, -2)

        if not parallel_model:
            onset_pred = self(mel)
        else:
            onset_pred = parallel_model(mel)

        predictions = {
            "onset": onset_pred,
        }

        losses = {
            "loss/onset": F.binary_cross_entropy(
                predictions["onset"], onset_label, reduction="none"
            ),
        }

        onset_mask = 1.0 * onset_label
        onset_mask[..., :-N_KEYS] *= positive_weight - 1
        onset_mask[..., -N_KEYS:] *= inv_positive_weight - 1
        onset_mask += 1
        if with_onset_mask:
            if "onset_mask" in batch:
                onset_mask = onset_mask * batch["onset_mask"]

        losses["loss/onset"] = (onset_mask * losses["loss/onset"]).mean()

        return predictions, losses