Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,731 Bytes
05d6e12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import logging
import os
import numpy as np
import torch
import torch.nn.functional as F
from onsets_and_frames.constants import (
DTW_FACTOR,
HOP_LENGTH,
MAX_MIDI,
MIN_MIDI,
N_KEYS,
)
def cycle(iterable):
while True:
for item in iterable:
yield item
def shift_label(label, shift):
if shift == 0:
return label
assert len(label.shape) == 2
t, p = label.shape
keys, instruments = N_KEYS, p // N_KEYS
label_zero_pad = torch.zeros(t, instruments, abs(shift), dtype=label.dtype)
label = label.reshape(t, instruments, keys)
to_cat = (
(label_zero_pad, label[:, :, :-shift])
if shift > 0
else (label[:, :, -shift:], label_zero_pad)
)
label = torch.cat(to_cat, dim=-1)
return label.reshape(t, p)
def get_peaks(notes, win_size, gpu=False):
constraints = []
notes = notes.cpu()
for i in range(1, win_size + 1):
forward = torch.roll(notes, i, 0)
forward[:i, ...] = 0 # assume time axis is 0
backward = torch.roll(notes, -i, 0)
backward[-i:, ...] = 0
constraints.extend([forward, backward])
res = torch.ones(notes.shape, dtype=bool)
for elem in constraints:
res = res & (notes >= elem)
return res if not gpu else res.cuda()
def get_peaks_numpy(notes, win_size):
"""
Detect peaks in a NumPy array based on a window size.
Args:
notes (np.ndarray): Input array, shape (frames, ...).
win_size (int): Window size for detecting peaks.
Returns:
np.ndarray: Boolean array indicating peaks, same shape as `notes`.
"""
# Initialize constraints
constraints = []
notes = np.array(notes) # Ensure input is a NumPy array
for i in range(1, win_size + 1):
# Roll array forward and backward
forward = np.roll(notes, i, axis=0)
backward = np.roll(notes, -i, axis=0)
# Zero out invalid regions
forward[:i, ...] = 0
backward[-i:, ...] = 0
constraints.extend([forward, backward])
# Initialize result with all True
res = np.ones_like(notes, dtype=bool)
# Apply constraints
for elem in constraints:
res &= notes >= elem
return res
def get_diff(notes, offset=True):
rolled = np.roll(notes, 1, axis=0)
rolled[0, ...] = 0
return (rolled & (~notes)) if offset else (notes & (~rolled))
def compress_across_octave(notes):
keys = MAX_MIDI - MIN_MIDI + 1
time, instruments = notes.shape[0], notes.shape[1] // keys
notes_reshaped = notes.reshape((time, instruments, keys))
notes_reshaped = notes_reshaped.max(axis=1)
octaves = keys // 12
res = np.zeros((time, 12), dtype=np.uint8)
for i in range(octaves):
curr_octave = notes_reshaped[:, i * 12 : (i + 1) * 12]
res = np.maximum(res, curr_octave)
return res
def compress_time(notes, factor):
t, p = notes.shape
res = np.zeros((t // factor, p), dtype=notes.dtype)
for i in range(t // factor):
res[i, :] = notes[i * factor : (i + 1) * factor, :].max(axis=0)
return res
def get_matches(index1, index2):
matches = {}
for i1, i2 in zip(index1, index2):
# matches[i1] = matches.get(i1, []) + [i2]
if i1 not in matches:
matches[i1] = []
matches[i1].append(i2)
return matches
"""
Extend a temporal range to WINDOW_SIZE_SRC if it is shorter than that.
WINDOW_SIZE_SRC defaults to 28 frames for 256 hop length (assuming DTW_FACTOR=3), which is ~0.5 second.
"""
def get_margin(
t_sources, max_len, WINDOW_SIZE_SRC=11 * (512 // HOP_LENGTH) + 2 * DTW_FACTOR
):
margin = max(0, (WINDOW_SIZE_SRC - len(t_sources)) // 2)
t_sources_left = list(range(max(t_sources[0] - margin, 0), t_sources[0]))
t_sources_right = list(
range(t_sources[-1], min(t_sources[-1] + margin, max_len - 1))
)
t_sources_extended = t_sources_left + t_sources + t_sources_right
return t_sources_extended
def get_inactive_instruments(target_onsets, T):
keys = MAX_MIDI - MIN_MIDI + 1
time, instruments = target_onsets.shape[0], target_onsets.shape[1] // keys
notes_reshaped = target_onsets.reshape((time, instruments, keys))
active_instruments = notes_reshaped.max(axis=(0, 2))
res = np.zeros((T, instruments, keys), dtype=bool)
for ins in range(instruments):
if active_instruments[ins] == 0:
res[:, ins, :] = 1
return res.reshape((T, instruments * keys)), active_instruments
def max_inst(probs, threshold_vec=None):
if threshold_vec is None:
threshold_vec = 0.5
if probs.shape[-1] == N_KEYS or probs.shape[-1] == N_KEYS * 2:
# there is only pitch
return probs
keys = MAX_MIDI - MIN_MIDI + 1
instruments = probs.shape[1] // keys
time = len(probs)
probs = probs.reshape((time, instruments, keys))
notes = probs.max(axis=1) >= threshold_vec
max_instruments = np.argmax(probs[:, :-1, :], axis=1)
res = np.zeros(probs.shape, dtype=np.uint8)
for t, p in zip(*(notes.nonzero())):
res[t, max_instruments[t, p], p] = 1
res[t, -1, p] = 1
return res.reshape((time, instruments * keys))
# Define the smoothing function (operates on CPU)
def smooth_labels(onset_tensor):
"""
Smooths onset labels using a triangular kernel with 1D convolution along the time axis.
Args:
onset_tensor (torch.Tensor): A (T, F) tensor where T = time steps and F = pitches.
Returns:
torch.Tensor: Smoothed onset tensor with the same shape (T, F).
"""
# Define the triangular smoothing kernel
# kernel = torch.tensor([0.2, 0.4, 0.6, 0.8, 1, 0.8, 0.6, 0.4, 0.2],
# dtype=onset_tensor.dtype).view(1, 1, -1)
# kernel = torch.tensor([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1],
# dtype=onset_tensor.dtype).view(1, 1, -1)
kernel = torch.tensor([0.33, 0.67, 1, 0.67, 0.33], dtype=onset_tensor.dtype).view(
1, 1, -1
)
onset_tensor = onset_tensor.T.unsqueeze(1) # Now shape is (F, 1, T)
# Use 'same' padding so that the output has the same time dimension as the input.
padding = kernel.shape[-1] // 2
smoothed = F.conv1d(onset_tensor, kernel, padding=padding)
# Reshape back to original shape (T, F)
return smoothed.squeeze(1).T
def initialize_logging_system(logdir):
"""Initialize the logging system once with named loggers for train and dataset."""
log_file = os.path.join(logdir, "training.log")
# Create formatter
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
# File handler (shared by all loggers)
file_handler = logging.FileHandler(log_file)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
# Console handler (shared by all loggers)
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(formatter)
# Create train logger
train_logger = logging.getLogger("train")
train_logger.setLevel(logging.INFO)
train_logger.handlers.clear()
train_logger.addHandler(file_handler)
train_logger.addHandler(console_handler)
# Create dataset logger
dataset_logger = logging.getLogger("dataset")
dataset_logger.setLevel(logging.INFO)
dataset_logger.handlers.clear()
dataset_logger.addHandler(file_handler)
dataset_logger.addHandler(console_handler)
return train_logger, dataset_logger
def get_logger(name):
"""Get a named logger. Call initialize_logging_system first."""
return logging.getLogger(name)
|