Spaces:
Running
on
Zero
Running
on
Zero
added app.py and updated README
Browse files
README.md
CHANGED
|
@@ -10,4 +10,44 @@ pinned: false
|
|
| 10 |
license: cc-by-4.0
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
license: cc-by-4.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# CountEM - Automatic Music Transcription
|
| 14 |
+
|
| 15 |
+
Upload a piano/music recording and transcribe it to MIDI using the CountEM framework.
|
| 16 |
+
|
| 17 |
+
## About
|
| 18 |
+
|
| 19 |
+
This is a Gradio demo for **CountEM**, a histogram-based supervision approach for Automatic Music Transcription (AMT) presented at ISMIR 2025.
|
| 20 |
+
|
| 21 |
+
**Paper:** [Count the Notes: Histogram-Based Supervision for Automatic Music Transcription](https://arxiv.org/abs/2511.14250)
|
| 22 |
+
|
| 23 |
+
## Models
|
| 24 |
+
|
| 25 |
+
- [countem-musicnet](https://huggingface.co/Yoni-Yaffe/countem-musicnet) - Trained on MusicNet dataset (recommended)
|
| 26 |
+
- [countem-synth](https://huggingface.co/Yoni-Yaffe/countem-synth) - Trained on synthetic data
|
| 27 |
+
|
| 28 |
+
## Links
|
| 29 |
+
|
| 30 |
+
- [GitHub Repository](https://github.com/Yoni-Yaffe/count-the-notes)
|
| 31 |
+
- [Project Page](https://yoni-yaffe.github.io/count-the-notes/)
|
| 32 |
+
- [ArXiv Paper](https://arxiv.org/abs/2511.14250)
|
| 33 |
+
|
| 34 |
+
## Citation
|
| 35 |
+
|
| 36 |
+
If you use this work, please cite:
|
| 37 |
+
|
| 38 |
+
```bibtex
|
| 39 |
+
@misc{yaffe2025countnoteshistogrambasedsupervision,
|
| 40 |
+
title={Count The Notes: Histogram-Based Supervision for Automatic Music Transcription},
|
| 41 |
+
author={Jonathan Yaffe and Ben Maman and Meinard Müller and Amit H. Bermano},
|
| 42 |
+
year={2025},
|
| 43 |
+
eprint={2511.14250},
|
| 44 |
+
archivePrefix={arXiv},
|
| 45 |
+
primaryClass={cs.SD},
|
| 46 |
+
url={https://arxiv.org/abs/2511.14250},
|
| 47 |
+
}
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
## License
|
| 52 |
+
|
| 53 |
+
CC-BY-4.0
|
app.py
ADDED
|
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio demo for CountEM Automatic Music Transcription.
|
| 3 |
+
|
| 4 |
+
This demo allows users to upload audio files and transcribe them to MIDI
|
| 5 |
+
using pre-trained models from Hugging Face Hub.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import tempfile
|
| 10 |
+
import os
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
import numpy as np
|
| 13 |
+
import soundfile as sf
|
| 14 |
+
import librosa
|
| 15 |
+
from onsets_and_frames.hf_model import CountEMModel
|
| 16 |
+
from onsets_and_frames.constants import SAMPLE_RATE
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# Cache for loaded models to avoid reloading
|
| 20 |
+
model_cache = {}
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def load_model(model_name: str) -> CountEMModel:
|
| 24 |
+
"""Load model from cache or download from Hugging Face Hub."""
|
| 25 |
+
if model_name not in model_cache:
|
| 26 |
+
print(f"Loading model: {model_name}")
|
| 27 |
+
model_cache[model_name] = CountEMModel.from_pretrained(model_name)
|
| 28 |
+
print(f"Model loaded successfully")
|
| 29 |
+
return model_cache[model_name]
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def transcribe_audio(
|
| 33 |
+
audio_input,
|
| 34 |
+
model_choice: str,
|
| 35 |
+
onset_threshold: float,
|
| 36 |
+
frame_threshold: float,
|
| 37 |
+
) -> tuple:
|
| 38 |
+
"""
|
| 39 |
+
Transcribe audio to MIDI.
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
audio_input: Tuple of (sample_rate, audio_data) from Gradio Audio component
|
| 43 |
+
model_choice: Model to use ("MusicNet" or "Synth")
|
| 44 |
+
onset_threshold: Threshold for onset detection
|
| 45 |
+
frame_threshold: Threshold for frame detection
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
Tuple of (output_midi_path, status_message)
|
| 49 |
+
"""
|
| 50 |
+
try:
|
| 51 |
+
# Handle empty input
|
| 52 |
+
if audio_input is None:
|
| 53 |
+
return None, "Error: Please upload an audio file"
|
| 54 |
+
|
| 55 |
+
# Map model choice to HuggingFace repo ID
|
| 56 |
+
model_map = {
|
| 57 |
+
"MusicNet (Recommended)": "Yoni-Yaffe/countem-musicnet",
|
| 58 |
+
"Synth": "Yoni-Yaffe/countem-synth",
|
| 59 |
+
}
|
| 60 |
+
model_name = model_map[model_choice]
|
| 61 |
+
|
| 62 |
+
# Extract audio data
|
| 63 |
+
# Gradio Audio component returns (sample_rate, audio_array) or audio file path
|
| 64 |
+
if isinstance(audio_input, tuple):
|
| 65 |
+
sr, audio = audio_input
|
| 66 |
+
# Convert to float32 if needed
|
| 67 |
+
if audio.dtype == np.int16:
|
| 68 |
+
audio = audio.astype(np.float32) / 32768.0
|
| 69 |
+
elif audio.dtype == np.int32:
|
| 70 |
+
audio = audio.astype(np.float32) / 2147483648.0
|
| 71 |
+
elif isinstance(audio_input, str):
|
| 72 |
+
# Audio file path provided
|
| 73 |
+
audio, sr = sf.read(audio_input, dtype="float32")
|
| 74 |
+
else:
|
| 75 |
+
return None, f"Error: Unexpected audio input type: {type(audio_input)}"
|
| 76 |
+
|
| 77 |
+
# Convert stereo to mono if needed
|
| 78 |
+
if len(audio.shape) > 1:
|
| 79 |
+
audio = audio.mean(axis=1)
|
| 80 |
+
|
| 81 |
+
# Resample to 16kHz if needed
|
| 82 |
+
if sr != SAMPLE_RATE:
|
| 83 |
+
print(f"Resampling from {sr}Hz to {SAMPLE_RATE}Hz")
|
| 84 |
+
audio = librosa.resample(audio, orig_sr=sr, target_sr=SAMPLE_RATE)
|
| 85 |
+
sr = SAMPLE_RATE
|
| 86 |
+
|
| 87 |
+
# Check audio length
|
| 88 |
+
duration = len(audio) / sr
|
| 89 |
+
if duration < 0.5:
|
| 90 |
+
return None, "Error: Audio is too short (minimum 0.5 seconds)"
|
| 91 |
+
if duration > 600: # 10 minutes
|
| 92 |
+
return (
|
| 93 |
+
None,
|
| 94 |
+
f"Error: Audio is too long ({duration:.1f}s). Maximum is 10 minutes (600s).",
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# Load model
|
| 98 |
+
status = f"Loading {model_choice} model..."
|
| 99 |
+
print(status)
|
| 100 |
+
model = load_model(model_name)
|
| 101 |
+
|
| 102 |
+
# Transcribe
|
| 103 |
+
status = f"Transcribing {duration:.1f} seconds of audio..."
|
| 104 |
+
print(status)
|
| 105 |
+
|
| 106 |
+
# Create temporary MIDI file
|
| 107 |
+
with tempfile.NamedTemporaryFile(suffix=".mid", delete=False) as tmp:
|
| 108 |
+
output_path = tmp.name
|
| 109 |
+
|
| 110 |
+
model.transcribe_to_midi(
|
| 111 |
+
audio,
|
| 112 |
+
output_path,
|
| 113 |
+
onset_threshold=onset_threshold,
|
| 114 |
+
frame_threshold=frame_threshold,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
# Success message
|
| 118 |
+
success_msg = f"""
|
| 119 |
+
✓ Transcription complete!
|
| 120 |
+
- Model: {model_choice}
|
| 121 |
+
- Duration: {duration:.2f} seconds
|
| 122 |
+
- Sample rate: {sr} Hz
|
| 123 |
+
- Onset threshold: {onset_threshold}
|
| 124 |
+
- Frame threshold: {frame_threshold}
|
| 125 |
+
|
| 126 |
+
Download your MIDI file using the button below.
|
| 127 |
+
"""
|
| 128 |
+
|
| 129 |
+
return output_path, success_msg.strip()
|
| 130 |
+
|
| 131 |
+
except Exception as e:
|
| 132 |
+
error_msg = f"Error during transcription: {str(e)}"
|
| 133 |
+
print(error_msg)
|
| 134 |
+
return None, error_msg
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
# Build Gradio interface
|
| 138 |
+
with gr.Blocks(title="CountEM - Music Transcription") as demo:
|
| 139 |
+
gr.Markdown(
|
| 140 |
+
"""
|
| 141 |
+
# CountEM - Automatic Music Transcription
|
| 142 |
+
|
| 143 |
+
Upload a piano/music recording and transcribe it to MIDI using the CountEM framework.
|
| 144 |
+
|
| 145 |
+
**Paper:** [Count the Notes: Histogram-Based Supervision for Automatic Music Transcription](https://arxiv.org/abs/2511.14250) (ISMIR 2025)
|
| 146 |
+
|
| 147 |
+
**Models on Hugging Face:**
|
| 148 |
+
- [countem-musicnet](https://huggingface.co/Yoni-Yaffe/countem-musicnet) - Trained on MusicNet dataset
|
| 149 |
+
- [countem-synth](https://huggingface.co/Yoni-Yaffe/countem-synth) - Trained on synthetic data
|
| 150 |
+
"""
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
with gr.Row():
|
| 154 |
+
with gr.Column():
|
| 155 |
+
# Input section
|
| 156 |
+
audio_input = gr.Audio(
|
| 157 |
+
label="Upload Audio File",
|
| 158 |
+
type="filepath",
|
| 159 |
+
sources=["upload"],
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
model_choice = gr.Radio(
|
| 163 |
+
choices=["MusicNet (Recommended)", "Synth"],
|
| 164 |
+
value="MusicNet (Recommended)",
|
| 165 |
+
label="Model Selection",
|
| 166 |
+
info="MusicNet model is trained on real piano recordings, Synth on synthetic data",
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
with gr.Row():
|
| 170 |
+
onset_threshold = gr.Slider(
|
| 171 |
+
minimum=0.1,
|
| 172 |
+
maximum=0.9,
|
| 173 |
+
value=0.5,
|
| 174 |
+
step=0.05,
|
| 175 |
+
label="Onset Threshold",
|
| 176 |
+
info="Higher = fewer notes detected",
|
| 177 |
+
)
|
| 178 |
+
frame_threshold = gr.Slider(
|
| 179 |
+
minimum=0.1,
|
| 180 |
+
maximum=0.9,
|
| 181 |
+
value=0.5,
|
| 182 |
+
step=0.05,
|
| 183 |
+
label="Frame Threshold",
|
| 184 |
+
info="Higher = shorter note durations",
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
transcribe_btn = gr.Button("Transcribe to MIDI", variant="primary")
|
| 188 |
+
|
| 189 |
+
with gr.Column():
|
| 190 |
+
# Output section
|
| 191 |
+
output_midi = gr.File(label="Download MIDI", interactive=False)
|
| 192 |
+
status_output = gr.Textbox(
|
| 193 |
+
label="Status",
|
| 194 |
+
lines=10,
|
| 195 |
+
interactive=False,
|
| 196 |
+
placeholder="Upload audio and click 'Transcribe to MIDI' to start...",
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
# Example files
|
| 200 |
+
gr.Markdown(
|
| 201 |
+
"""
|
| 202 |
+
### Notes:
|
| 203 |
+
- Audio will be automatically resampled to 16kHz if needed
|
| 204 |
+
- Supports common formats: WAV, FLAC, MP3
|
| 205 |
+
- Maximum duration: 10 minutes
|
| 206 |
+
- Best results with piano recordings at 16kHz
|
| 207 |
+
- Processing time depends on audio length (typically a few seconds per minute of audio)
|
| 208 |
+
"""
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
# Connect button to function
|
| 212 |
+
transcribe_btn.click(
|
| 213 |
+
fn=transcribe_audio,
|
| 214 |
+
inputs=[audio_input, model_choice, onset_threshold, frame_threshold],
|
| 215 |
+
outputs=[output_midi, status_output],
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
gr.Markdown(
|
| 219 |
+
"""
|
| 220 |
+
---
|
| 221 |
+
**Project Links:**
|
| 222 |
+
- [GitHub Repository](https://github.com/Yoni-Yaffe/count-the-notes)
|
| 223 |
+
- [Project Page](https://yoni-yaffe.github.io/count-the-notes/)
|
| 224 |
+
- [ArXiv Paper](https://arxiv.org/abs/2511.14250)
|
| 225 |
+
|
| 226 |
+
If you use this work, please cite:
|
| 227 |
+
```
|
| 228 |
+
@inproceedings{yaffe2025countem,
|
| 229 |
+
title={Count the Notes: Histogram-Based Supervision for Automatic Music Transcription},
|
| 230 |
+
author={Jonathan Yaffe and Ben Maman and Meinard Müller and Amit Bermano},
|
| 231 |
+
booktitle={Proc. ISMIR},
|
| 232 |
+
year={2025}
|
| 233 |
+
}
|
| 234 |
+
```
|
| 235 |
+
"""
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
if __name__ == "__main__":
|
| 240 |
+
# Pre-load the default model to speed up first transcription
|
| 241 |
+
print("Pre-loading default model...")
|
| 242 |
+
load_model("Yoni-Yaffe/countem-musicnet")
|
| 243 |
+
print("Model pre-loaded. Starting Gradio interface...")
|
| 244 |
+
|
| 245 |
+
# Launch the demo
|
| 246 |
+
demo.launch(
|
| 247 |
+
share=False, # Set to True to create a public link
|
| 248 |
+
server_name="0.0.0.0", # Allow access from network
|
| 249 |
+
server_port=7860,
|
| 250 |
+
)
|