Spaces:
Sleeping
Sleeping
Commit
·
3b70c60
1
Parent(s):
6be35bd
Add StoryKimi ZeroGPU implementation
Browse files- Add ZeroGPU-compatible app.py with @spaces.GPU decorator
- Copy all necessary model files (config.py, model.py, tokenizer.py, inference.py)
- Update requirements.txt with spaces and gradio dependencies
- Comprehensive README.md based on original StoryKimi with HF Spaces adaptations
- Add .gitignore to exclude checkpoints and temporary files while keeping main model
- Configure metadata for ZeroGPU hardware in README frontmatter
- .gitignore +217 -0
- README.md +140 -5
- app.py +202 -0
- config.py +151 -0
- inference.py +46 -0
- model.py +589 -0
- requirements.txt +9 -0
- tokenizer.py +18 -0
.gitignore
ADDED
|
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
share/python-wheels/
|
| 24 |
+
*.egg-info/
|
| 25 |
+
.installed.cfg
|
| 26 |
+
*.egg
|
| 27 |
+
MANIFEST
|
| 28 |
+
|
| 29 |
+
# PyInstaller
|
| 30 |
+
# Usually these files are written by a python script from a template
|
| 31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 32 |
+
*.manifest
|
| 33 |
+
*.spec
|
| 34 |
+
|
| 35 |
+
# Installer logs
|
| 36 |
+
pip-log.txt
|
| 37 |
+
pip-delete-this-directory.txt
|
| 38 |
+
|
| 39 |
+
# Unit test / coverage reports
|
| 40 |
+
htmlcov/
|
| 41 |
+
.tox/
|
| 42 |
+
.nox/
|
| 43 |
+
.coverage
|
| 44 |
+
.coverage.*
|
| 45 |
+
.cache
|
| 46 |
+
nosetests.xml
|
| 47 |
+
coverage.xml
|
| 48 |
+
*.cover
|
| 49 |
+
*.py,cover
|
| 50 |
+
.hypothesis/
|
| 51 |
+
.pytest_cache/
|
| 52 |
+
cover/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
.pybuilder/
|
| 76 |
+
target/
|
| 77 |
+
|
| 78 |
+
# Jupyter Notebook
|
| 79 |
+
.ipynb_checkpoints
|
| 80 |
+
|
| 81 |
+
# IPython
|
| 82 |
+
profile_default/
|
| 83 |
+
ipython_config.py
|
| 84 |
+
|
| 85 |
+
# pyenv
|
| 86 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 88 |
+
# .python-version
|
| 89 |
+
|
| 90 |
+
# pipenv
|
| 91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 94 |
+
# install all needed dependencies.
|
| 95 |
+
#Pipfile.lock
|
| 96 |
+
|
| 97 |
+
# poetry
|
| 98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 100 |
+
# commonly ignored for libraries.
|
| 101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 102 |
+
#poetry.lock
|
| 103 |
+
|
| 104 |
+
# pdm
|
| 105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 106 |
+
#pdm.lock
|
| 107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
| 108 |
+
# in version control.
|
| 109 |
+
# https://pdm.fming.dev/#use-with-ide
|
| 110 |
+
.pdm.toml
|
| 111 |
+
|
| 112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 113 |
+
__pypackages__/
|
| 114 |
+
|
| 115 |
+
# Celery stuff
|
| 116 |
+
celerybeat-schedule
|
| 117 |
+
celerybeat.pid
|
| 118 |
+
|
| 119 |
+
# SageMath parsed files
|
| 120 |
+
*.sage.py
|
| 121 |
+
|
| 122 |
+
# Environments
|
| 123 |
+
.env
|
| 124 |
+
.venv
|
| 125 |
+
env/
|
| 126 |
+
venv/
|
| 127 |
+
ENV/
|
| 128 |
+
env.bak/
|
| 129 |
+
venv.bak/
|
| 130 |
+
|
| 131 |
+
# Spyder project settings
|
| 132 |
+
.spyderproject
|
| 133 |
+
.spyproject
|
| 134 |
+
|
| 135 |
+
# Rope project settings
|
| 136 |
+
.ropeproject
|
| 137 |
+
|
| 138 |
+
# mkdocs documentation
|
| 139 |
+
/site
|
| 140 |
+
|
| 141 |
+
# mypy
|
| 142 |
+
.mypy_cache/
|
| 143 |
+
.dmypy.json
|
| 144 |
+
dmypy.json
|
| 145 |
+
|
| 146 |
+
# Pyre type checker
|
| 147 |
+
.pyre/
|
| 148 |
+
|
| 149 |
+
# pytype static type analyzer
|
| 150 |
+
.pytype/
|
| 151 |
+
|
| 152 |
+
# Cython debug symbols
|
| 153 |
+
cython_debug/
|
| 154 |
+
|
| 155 |
+
# PyCharm
|
| 156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 157 |
+
# be added to the global gitignore or merged into this project gitignore. For a PyCharm
|
| 158 |
+
# project, uncomment the following line:
|
| 159 |
+
#.idea/
|
| 160 |
+
|
| 161 |
+
# Model checkpoints and weights (except the main one we want to keep)
|
| 162 |
+
checkpoints/
|
| 163 |
+
*.pt
|
| 164 |
+
*.pth
|
| 165 |
+
*.ckpt
|
| 166 |
+
*.safetensors
|
| 167 |
+
!checkpoint_2000.pt
|
| 168 |
+
|
| 169 |
+
# Wandb logs
|
| 170 |
+
wandb/
|
| 171 |
+
runs/
|
| 172 |
+
|
| 173 |
+
# Generated data
|
| 174 |
+
generated_data/
|
| 175 |
+
data/
|
| 176 |
+
datasets/
|
| 177 |
+
|
| 178 |
+
# Images (except for README)
|
| 179 |
+
images/
|
| 180 |
+
*.png
|
| 181 |
+
*.jpg
|
| 182 |
+
*.jpeg
|
| 183 |
+
*.gif
|
| 184 |
+
!images/image.png
|
| 185 |
+
|
| 186 |
+
# Gradio temporary files
|
| 187 |
+
gradio_cached_examples/
|
| 188 |
+
flagged/
|
| 189 |
+
|
| 190 |
+
# OS files
|
| 191 |
+
.DS_Store
|
| 192 |
+
.DS_Store?
|
| 193 |
+
._*
|
| 194 |
+
.Spotlight-V100
|
| 195 |
+
.Trashes
|
| 196 |
+
ehthumbs.db
|
| 197 |
+
Thumbs.db
|
| 198 |
+
|
| 199 |
+
# IDE files
|
| 200 |
+
.vscode/
|
| 201 |
+
.idea/
|
| 202 |
+
*.swp
|
| 203 |
+
*.swo
|
| 204 |
+
*~
|
| 205 |
+
|
| 206 |
+
# Temporary files
|
| 207 |
+
*.tmp
|
| 208 |
+
*.temp
|
| 209 |
+
temp/
|
| 210 |
+
|
| 211 |
+
# Log files
|
| 212 |
+
*.log
|
| 213 |
+
logs/
|
| 214 |
+
|
| 215 |
+
# Test files
|
| 216 |
+
test_outputs/
|
| 217 |
+
test_results/
|
README.md
CHANGED
|
@@ -1,13 +1,148 @@
|
|
| 1 |
---
|
| 2 |
title: StoryKimi Zero
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.42.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
license:
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
title: StoryKimi Zero
|
| 3 |
+
emoji: 🚀
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.42.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
hardware: zero-gpu
|
| 12 |
+
short_description: Generate stories with StoryKimi model using ZeroGPU
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# StoryKimi Zero - DeepSeek V3 Inspired Model on ZeroGPU
|
| 16 |
+
|
| 17 |
+
A PyTorch implementation of a DeepSeek V3 inspired transformer model with Mixture of Experts (MoE), Latent Attention, and other advanced features, deployed on Hugging Face Spaces with ZeroGPU for efficient inference.
|
| 18 |
+
|
| 19 |
+

|
| 20 |
+
|
| 21 |
+
## 📊 Training Results & Model Weights
|
| 22 |
+
|
| 23 |
+
**📈 View Training Report**: [StoryKimi Training Results on WandB](https://wandb.ai/rentio/DSV-Training/reports/SmolKimi-A-smaller-Kimi-K2---VmlldzoxMzYwNDQ4Mg?accessToken=lfs6n1y7gn8q0f0dwilta8yuwzxel45ztzbbcavwbqp7jsyv1p7cz9elflycv9fg)
|
| 24 |
+
|
| 25 |
+
**💾 Pre-trained Weights**:
|
| 26 |
+
- **Hugging Face Model**: [YuvrajSingh9886/StoryKimi](https://huggingface.co/YuvrajSingh9886/StoryKimi)
|
| 27 |
+
- **WandB Checkpoints**: Check the WandB report above for additional trained model checkpoints
|
| 28 |
+
|
| 29 |
+
## 🌟 Features
|
| 30 |
+
|
| 31 |
+
- **ZeroGPU Integration**: Dynamic GPU allocation with NVIDIA H200 slices (70GB VRAM)
|
| 32 |
+
- **Latent Attention**: Efficient attention mechanism with compressed key-value representations
|
| 33 |
+
- **Mixture of Experts (MoE)**: 8 experts with top-2 routing and shared expert support
|
| 34 |
+
- **SWiGLU Activation**: Advanced activation function in expert layers
|
| 35 |
+
- **Sinusoidal Positional Embeddings**: Position encoding for sequence understanding
|
| 36 |
+
- **Interactive Interface**: User-friendly Gradio interface with real-time generation
|
| 37 |
+
- **Multiple Sampling Methods**: Top-k sampling with temperature control
|
| 38 |
+
- **Real-time Generation**: Fast inference with automatic scaling
|
| 39 |
+
|
| 40 |
+
## 🔧 Model Architecture
|
| 41 |
+
|
| 42 |
+
### Default Configuration
|
| 43 |
+
- **Embedding Dimensions**: 384
|
| 44 |
+
- **Decoder Layers**: 6
|
| 45 |
+
- **Attention Heads**: 8
|
| 46 |
+
- **MoE Experts**: 8 (top-2 routing)
|
| 47 |
+
- **Block Size**: 128 tokens
|
| 48 |
+
- **Vocabulary Size**: Based on Llama-2-7b tokenizer (~32,000 tokens)
|
| 49 |
+
- **Latent Dimension**: 64 (for compressed attention)
|
| 50 |
+
|
| 51 |
+
### ZeroGPU Configuration
|
| 52 |
+
- **GPU Type**: NVIDIA H200 slice
|
| 53 |
+
- **Available VRAM**: 70GB per workload
|
| 54 |
+
- **Max Duration**: 120 seconds per generation
|
| 55 |
+
- **Deployment**: Hugging Face Spaces with automatic scaling
|
| 56 |
+
|
| 57 |
+
## 🎯 Usage
|
| 58 |
+
|
| 59 |
+
1. **Enter your story prompt** in the text box
|
| 60 |
+
2. **Select model checkpoint** (Checkpoint 2000 available)
|
| 61 |
+
3. **Adjust generation parameters**:
|
| 62 |
+
- **Max Length**: 10-128 tokens
|
| 63 |
+
- **Temperature**: 0.1-2.0 (creativity vs coherence)
|
| 64 |
+
- **Top-k**: 1-100 (vocabulary filtering)
|
| 65 |
+
4. **Click "Generate Text"** to create your AI-generated story
|
| 66 |
+
5. **Enjoy your personalized story!**
|
| 67 |
+
|
| 68 |
+
## 💡 Generation Tips
|
| 69 |
+
|
| 70 |
+
- **Lower temperature** (0.1-0.7) for more coherent and focused stories
|
| 71 |
+
- **Higher temperature** (0.8-2.0) for more creative and diverse outputs
|
| 72 |
+
- **Adjust top-k** to control vocabulary diversity and randomness
|
| 73 |
+
- **Use descriptive prompts** for better and more relevant results
|
| 74 |
+
- **Experiment with different lengths** to find your preferred story format
|
| 75 |
+
|
| 76 |
+
## 🔄 ZeroGPU Benefits
|
| 77 |
+
|
| 78 |
+
- **Free GPU Access**: No cost for users to generate stories
|
| 79 |
+
- **Efficient Resource Usage**: GPU allocated only when needed for inference
|
| 80 |
+
- **Automatic Scaling**: Handles multiple concurrent users seamlessly
|
| 81 |
+
- **High Performance**: NVIDIA H200 acceleration for fast generation
|
| 82 |
+
- **No Setup Required**: Ready-to-use interface with pre-loaded model
|
| 83 |
+
|
| 84 |
+
## 🏗️ Technical Implementation
|
| 85 |
+
|
| 86 |
+
### Model Features
|
| 87 |
+
- **Latent Attention**: Compressed key-value representations for efficiency
|
| 88 |
+
- **Mixture of Experts**: 8 experts with intelligent routing
|
| 89 |
+
- **Advanced Activation**: SWiGLU for better performance
|
| 90 |
+
- **Positional Encoding**: Sinusoidal embeddings for sequence understanding
|
| 91 |
+
|
| 92 |
+
### Deployment Features
|
| 93 |
+
- **ZeroGPU Decorator**: `@spaces.GPU(duration=120)` for dynamic allocation
|
| 94 |
+
- **Optimized Loading**: Efficient model loading and initialization
|
| 95 |
+
- **Error Handling**: Robust error management for better user experience
|
| 96 |
+
- **Real-time Feedback**: Live generation status and results
|
| 97 |
+
|
| 98 |
+
## 🚀 Local Development
|
| 99 |
+
|
| 100 |
+
Want to run this locally or contribute? Check out the full repository:
|
| 101 |
+
|
| 102 |
+
**📁 Source Code**: [YuvrajSingh-mist/SmolHub/StoryKimi](https://github.com/YuvrajSingh-mist/SmolHub/tree/main/StoryKimi)
|
| 103 |
+
|
| 104 |
+
### Quick Local Setup
|
| 105 |
+
```bash
|
| 106 |
+
# Clone the repository
|
| 107 |
+
git clone https://github.com/YuvrajSingh-mist/SmolHub.git
|
| 108 |
+
cd SmolHub/StoryKimi
|
| 109 |
+
|
| 110 |
+
# Install dependencies
|
| 111 |
+
chmod +x install.sh
|
| 112 |
+
./install.sh
|
| 113 |
+
|
| 114 |
+
# Run Gradio interface
|
| 115 |
+
cd gradio
|
| 116 |
+
python app.py
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
### Training Your Own Model
|
| 120 |
+
```bash
|
| 121 |
+
# Set your HF token for Llama-2 tokenizer access
|
| 122 |
+
export HF_TOKEN="your_token_here"
|
| 123 |
+
|
| 124 |
+
# Basic training
|
| 125 |
+
python trainer.py
|
| 126 |
+
|
| 127 |
+
# Advanced training with custom parameters
|
| 128 |
+
python trainer.py --embeddings_dims 512 --experts 16 --epochs 5
|
| 129 |
+
```
|
| 130 |
+
|
| 131 |
+
## 📊 Model Performance
|
| 132 |
+
|
| 133 |
+
The model has been trained on diverse text data and shows strong performance in:
|
| 134 |
+
- **Story Generation**: Creative and coherent narrative creation
|
| 135 |
+
- **Text Continuation**: Natural extension of given prompts
|
| 136 |
+
- **Style Adaptation**: Adapting to different writing styles and genres
|
| 137 |
+
- **Character Development**: Creating consistent characters and dialogue
|
| 138 |
+
|
| 139 |
+
## 🔗 Related Links
|
| 140 |
+
|
| 141 |
+
- **Full Project**: [SmolHub Repository](https://github.com/YuvrajSingh-mist/SmolHub)
|
| 142 |
+
- **Model Weights**: [HuggingFace Model](https://huggingface.co/YuvrajSingh9886/StoryKimi)
|
| 143 |
+
- **Training Report**: [WandB Results](https://wandb.ai/rentio/DSV-Training/reports/SmolKimi-A-smaller-Kimi-K2---VmlldzoxMzYwNDQ4Mg?accessToken=lfs6n1y7gn8q0f0dwilta8yuwzxel45ztzbbcavwbqp7jsyv1p7cz9elflycv9fg)
|
| 144 |
+
- **Other Models**: [SmolMixtral](https://github.com/YuvrajSingh-mist/SmolHub/tree/main/SmolMixtral), [SmolTransformer](https://github.com/YuvrajSingh-mist/SmolHub/tree/main/SmolTransformer)
|
| 145 |
+
|
| 146 |
+
## 📝 License
|
| 147 |
+
|
| 148 |
+
MIT License - See LICENSE file for details
|
app.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces # HF Spaces ZeroGPU decorator - only available in HF Spaces environment
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import os
|
| 6 |
+
import sys
|
| 7 |
+
|
| 8 |
+
from config import ModelArgs, get_args
|
| 9 |
+
from model import DeepSeekV3, initialize_tokenizer
|
| 10 |
+
from tokenizer import Tokenizer
|
| 11 |
+
from inference import topk_sampling
|
| 12 |
+
|
| 13 |
+
# Global variables
|
| 14 |
+
tk = None
|
| 15 |
+
model = None
|
| 16 |
+
model_args = None
|
| 17 |
+
|
| 18 |
+
# Model paths - using the checkpoint in the HF Space
|
| 19 |
+
model_paths = {
|
| 20 |
+
"Checkpoint 2000": "./checkpoint_2000.pt",
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
def initialize_app():
|
| 24 |
+
"""Initialize the app with tokenizer and model args"""
|
| 25 |
+
global tk, model_args
|
| 26 |
+
|
| 27 |
+
# Initialize model args
|
| 28 |
+
model_args = ModelArgs()
|
| 29 |
+
|
| 30 |
+
# Initialize tokenizer (no HF token needed for basic operation)
|
| 31 |
+
if tk is None:
|
| 32 |
+
tk = Tokenizer(hf_token=None)
|
| 33 |
+
tk = tk.ready_tokenizer()
|
| 34 |
+
|
| 35 |
+
# Initialize the global tokenizer in model.py
|
| 36 |
+
initialize_tokenizer(hf_token=None)
|
| 37 |
+
|
| 38 |
+
def load_model(model_path, device, model_args):
|
| 39 |
+
"""Load model from checkpoint"""
|
| 40 |
+
model = DeepSeekV3(
|
| 41 |
+
embeddings_dims=model_args.embeddings_dims,
|
| 42 |
+
block_size=model_args.block_size,
|
| 43 |
+
vocab_size=model_args.vocab_size,
|
| 44 |
+
dropout=model_args.dropout,
|
| 45 |
+
device=device
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
if os.path.exists(model_path):
|
| 49 |
+
checkpoint = torch.load(model_path, map_location=device)
|
| 50 |
+
model.load_state_dict(checkpoint)
|
| 51 |
+
model.eval()
|
| 52 |
+
print(f"Model loaded from {model_path}")
|
| 53 |
+
else:
|
| 54 |
+
print(f"Checkpoint {model_path} not found. Using randomly initialized model.")
|
| 55 |
+
|
| 56 |
+
return model
|
| 57 |
+
|
| 58 |
+
@spaces.GPU(duration=120)
|
| 59 |
+
def generate_text(prompt, model_choice, max_length, temperature, top_k):
|
| 60 |
+
"""Generate text using the selected model and top-k sampling"""
|
| 61 |
+
global tk, model_args
|
| 62 |
+
|
| 63 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 64 |
+
print(f"Using device: {device}")
|
| 65 |
+
|
| 66 |
+
# Load the selected model
|
| 67 |
+
model_path = model_paths.get(model_choice, "./checkpoint_2000.pt")
|
| 68 |
+
model = load_model(model_path, device, model_args)
|
| 69 |
+
model = model.to(device)
|
| 70 |
+
|
| 71 |
+
try:
|
| 72 |
+
generated_text = topk_sampling(
|
| 73 |
+
model=model,
|
| 74 |
+
prompt=prompt,
|
| 75 |
+
device=device,
|
| 76 |
+
max_length=max_length,
|
| 77 |
+
top_k=top_k,
|
| 78 |
+
temperature=temperature,
|
| 79 |
+
tokenizer=tk
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
return generated_text
|
| 83 |
+
|
| 84 |
+
except Exception as e:
|
| 85 |
+
return f"Error generating text: {str(e)}"
|
| 86 |
+
|
| 87 |
+
def create_interface():
|
| 88 |
+
"""Create the Gradio interface"""
|
| 89 |
+
global tk, model_args
|
| 90 |
+
|
| 91 |
+
# Initialize the app
|
| 92 |
+
initialize_app()
|
| 93 |
+
|
| 94 |
+
with gr.Blocks(title="StoryKimi Text Generator", theme=gr.themes.Soft()) as demo:
|
| 95 |
+
gr.Markdown("# 🚀 StoryKimi Text Generator")
|
| 96 |
+
gr.Markdown("Generate text using the Kimi K2 inspired StoryKimi model with ZeroGPU support.")
|
| 97 |
+
gr.Markdown("⚡ **Powered by ZeroGPU** - Dynamic GPU allocation for efficient inference")
|
| 98 |
+
|
| 99 |
+
with gr.Row():
|
| 100 |
+
with gr.Column(scale=2):
|
| 101 |
+
prompt_input = gr.Textbox(
|
| 102 |
+
label="Input Prompt",
|
| 103 |
+
placeholder="Enter your prompt here...",
|
| 104 |
+
lines=3,
|
| 105 |
+
value="Once upon a time there lived a baby deer named Bambi."
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
with gr.Row():
|
| 109 |
+
model_dropdown = gr.Dropdown(
|
| 110 |
+
choices=list(model_paths.keys()),
|
| 111 |
+
label="Model Checkpoint",
|
| 112 |
+
value="Checkpoint 2000"
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
with gr.Row():
|
| 116 |
+
max_length_slider = gr.Slider(
|
| 117 |
+
minimum=10,
|
| 118 |
+
maximum=128,
|
| 119 |
+
value=50,
|
| 120 |
+
step=10,
|
| 121 |
+
label="Max Length"
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
temperature_slider = gr.Slider(
|
| 125 |
+
minimum=0.1,
|
| 126 |
+
maximum=2.0,
|
| 127 |
+
value=0.9,
|
| 128 |
+
step=0.1,
|
| 129 |
+
label="Temperature"
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
with gr.Row():
|
| 133 |
+
top_k_slider = gr.Slider(
|
| 134 |
+
minimum=1,
|
| 135 |
+
maximum=100,
|
| 136 |
+
value=50,
|
| 137 |
+
step=1,
|
| 138 |
+
label="Top-k"
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
with gr.Row():
|
| 142 |
+
top_k_slider = gr.Slider(
|
| 143 |
+
minimum=1,
|
| 144 |
+
maximum=100,
|
| 145 |
+
value=50,
|
| 146 |
+
step=1,
|
| 147 |
+
label="Top-k"
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
generate_btn = gr.Button("🎯 Generate Text", variant="primary", size="lg")
|
| 151 |
+
|
| 152 |
+
with gr.Column(scale=3):
|
| 153 |
+
output_text = gr.Textbox(
|
| 154 |
+
label="Generated Text",
|
| 155 |
+
lines=15,
|
| 156 |
+
interactive=False
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
with gr.Row():
|
| 160 |
+
clear_btn = gr.Button("🗑️ Clear", variant="secondary")
|
| 161 |
+
|
| 162 |
+
# Event handlers
|
| 163 |
+
generate_btn.click(
|
| 164 |
+
fn=generate_text,
|
| 165 |
+
inputs=[
|
| 166 |
+
prompt_input,
|
| 167 |
+
model_dropdown,
|
| 168 |
+
max_length_slider,
|
| 169 |
+
temperature_slider,
|
| 170 |
+
top_k_slider
|
| 171 |
+
],
|
| 172 |
+
outputs=output_text
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
clear_btn.click(
|
| 176 |
+
fn=lambda: ("", ""),
|
| 177 |
+
outputs=[prompt_input, output_text]
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
# Model information
|
| 181 |
+
gr.Markdown("## ℹ️ Model Information")
|
| 182 |
+
gr.Markdown("""
|
| 183 |
+
- **Model Architecture**: Kimi K2 inspired (StoryKimi)
|
| 184 |
+
- **ZeroGPU**: Dynamic GPU allocation with H200 slice (70GB VRAM)
|
| 185 |
+
- **GPU Duration**: 120 seconds maximum per generation
|
| 186 |
+
- **Deployment**: Hugging Face Spaces with automatic scaling
|
| 187 |
+
""")
|
| 188 |
+
|
| 189 |
+
gr.Markdown("## 🚀 Features")
|
| 190 |
+
gr.Markdown("""
|
| 191 |
+
- **Top-k Sampling**: Control randomness with top-k token selection
|
| 192 |
+
- **Temperature Control**: Adjust creativity vs coherence
|
| 193 |
+
- **Variable Length**: Generate 10-128 tokens
|
| 194 |
+
- **Real-time Generation**: Powered by ZeroGPU infrastructure
|
| 195 |
+
""")
|
| 196 |
+
|
| 197 |
+
return demo
|
| 198 |
+
|
| 199 |
+
if __name__ == "__main__":
|
| 200 |
+
# Create and launch the interface
|
| 201 |
+
demo = create_interface()
|
| 202 |
+
demo.launch()
|
config.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
|
| 4 |
+
def get_args():
|
| 5 |
+
parser = argparse.ArgumentParser(description='SmolKimi - DeepSeek V3 Inspired Model Training')
|
| 6 |
+
|
| 7 |
+
# Model Architecture
|
| 8 |
+
parser.add_argument('--block_size', type=int, default=128, help='Maximum sequence length')
|
| 9 |
+
parser.add_argument('--batch_size', type=int, default=256, help='Training batch size')
|
| 10 |
+
parser.add_argument('--embeddings_dims', type=int, default=384, help='Model embedding dimensions')
|
| 11 |
+
parser.add_argument('--no_of_heads', type=int, default=8, help='Number of attention heads')
|
| 12 |
+
parser.add_argument('--no_of_decoder_layers', type=int, default=6, help='Number of decoder layers')
|
| 13 |
+
parser.add_argument('--latent_dim', type=int, default=64, help='Latent dimension for attention')
|
| 14 |
+
|
| 15 |
+
# MoE Configuration
|
| 16 |
+
parser.add_argument('--experts', type=int, default=8, help='Number of MoE experts')
|
| 17 |
+
parser.add_argument('--top_experts', type=int, default=2, help='Number of experts to route to (top-k)')
|
| 18 |
+
parser.add_argument('--use_shared_expert', action='store_true', default=True, help='Enable shared expert in MoE')
|
| 19 |
+
parser.add_argument('--noisy_topk', action='store_true', default=False, help='Use noisy top-k routing')
|
| 20 |
+
parser.add_argument('--useauxFreeLoadBalancingLoss', action='store_true', default=True, help='Use auxiliary-free load balancing loss')
|
| 21 |
+
parser.add_argument('--aux_free_bias_update_rate', type=float, default=0.001, help='Bias update rate for load balancing')
|
| 22 |
+
parser.add_argument('--loss_scale', type=float, default=0.3, help='Loss scaling factor')
|
| 23 |
+
|
| 24 |
+
# Training Hyperparameters
|
| 25 |
+
parser.add_argument('--epochs', type=int, default=1, help='Number of training epochs')
|
| 26 |
+
parser.add_argument('--max_lr', type=float, default=6e-4, help='Maximum learning rate')
|
| 27 |
+
parser.add_argument('--weight_decay_optim', type=float, default=0.1, help='Weight decay for optimizer')
|
| 28 |
+
parser.add_argument('--beta_1', type=float, default=0.9, help='Beta1 for optimizer')
|
| 29 |
+
parser.add_argument('--beta_2', type=float, default=0.95, help='Beta2 for optimizer')
|
| 30 |
+
parser.add_argument('--eps', type=float, default=1e-8, help='Epsilon for optimizer')
|
| 31 |
+
parser.add_argument('--clip', type=float, default=1.0, help='Gradient clipping value')
|
| 32 |
+
|
| 33 |
+
# Regularization
|
| 34 |
+
parser.add_argument('--dropout', type=float, default=0.1, help='Dropout rate')
|
| 35 |
+
parser.add_argument('--attn_dropout', type=float, default=0.1, help='Attention dropout rate')
|
| 36 |
+
|
| 37 |
+
# System Configuration
|
| 38 |
+
parser.add_argument('--device', type=str, default='cuda', help='Device to use (cuda/cpu)')
|
| 39 |
+
parser.add_argument('--use_checkpointing', action='store_true', default=False, help='Use gradient checkpointing')
|
| 40 |
+
parser.add_argument('--use_liger', action='store_true', default=True, help='Use Liger kernels for optimization')
|
| 41 |
+
parser.add_argument('--ignore_pad_token_in_loss', action='store_true', default=True, help='Ignore padding tokens in loss calculation')
|
| 42 |
+
|
| 43 |
+
# Data Configuration
|
| 44 |
+
parser.add_argument('--vocab_size', type=int, default=32000 + 1 , help='Vocabulary size (updated based on tokenizer)')
|
| 45 |
+
parser.add_argument('--base_freq', type=int, default=100000, help='Base frequency for positional encoding')
|
| 46 |
+
parser.add_argument('--hf_token', type=str, default=None, help='Hugging Face token for accessing gated models like Llama-2')
|
| 47 |
+
|
| 48 |
+
# Dataset Selection
|
| 49 |
+
parser.add_argument('--dataset', type=str, default='tinystories', choices=['tinystories', 'fineweb', 'tinyshakespeare'], help='Dataset to use for training')
|
| 50 |
+
|
| 51 |
+
# Generation Parameters
|
| 52 |
+
parser.add_argument('--generation_max_length', type=int, default=50, help='Maximum length for text generation')
|
| 53 |
+
parser.add_argument('--generation_top_k', type=int, default=50, help='Top-k value for sampling during generation')
|
| 54 |
+
parser.add_argument('--generation_temperature', type=float, default=1.0, help='Temperature for sampling during generation')
|
| 55 |
+
|
| 56 |
+
# Logging and Checkpointing
|
| 57 |
+
parser.add_argument('--log_interval', type=int, default=100, help='Steps between logging')
|
| 58 |
+
parser.add_argument('--save_interval', type=int, default=2000, help='Steps between saving checkpoints')
|
| 59 |
+
parser.add_argument('--eval_interval', type=int, default=400, help='Steps between evaluation')
|
| 60 |
+
parser.add_argument('--eval_iters', type=int, default=400, help='Number of iterations for evaluation')
|
| 61 |
+
parser.add_argument('--warmup_iters', type=int, default=400, help='Number of warmup iterations')
|
| 62 |
+
parser.add_argument('--total_iters', type=int, default=10000, help='Total training iterations')
|
| 63 |
+
parser.add_argument('--lr_decay_iters', type=int, default=10000, help='Learning rate decay iterations')
|
| 64 |
+
parser.add_argument('--wandb_project', type=str, default='smolkimi', help='Wandb project name')
|
| 65 |
+
parser.add_argument('--wandb_run_name', type=str, default=None, help='Wandb run name')
|
| 66 |
+
|
| 67 |
+
# Batch Size Configuration
|
| 68 |
+
parser.add_argument('--total_batch_size', type=int, default=524288, help='Total batch size for gradient accumulation')
|
| 69 |
+
parser.add_argument('--micro_batch_size', type=int, default=None, help='Micro batch size (defaults to batch_size)')
|
| 70 |
+
|
| 71 |
+
# Distributed Training
|
| 72 |
+
parser.add_argument('--use_ddp', action='store_true', default=False, help='Use distributed data parallel')
|
| 73 |
+
|
| 74 |
+
return parser.parse_args()
|
| 75 |
+
|
| 76 |
+
@dataclass
|
| 77 |
+
class ModelArgs:
|
| 78 |
+
def __init__(self, args=None):
|
| 79 |
+
if args is None:
|
| 80 |
+
args = get_args()
|
| 81 |
+
|
| 82 |
+
# Model Architecture
|
| 83 |
+
self.block_size = args.block_size
|
| 84 |
+
self.batch_size = args.batch_size
|
| 85 |
+
self.embeddings_dims = args.embeddings_dims
|
| 86 |
+
self.no_of_heads = args.no_of_heads
|
| 87 |
+
self.no_of_decoder_layers = args.no_of_decoder_layers
|
| 88 |
+
self.latent_dim = args.latent_dim
|
| 89 |
+
|
| 90 |
+
# MoE Configuration
|
| 91 |
+
self.experts = args.experts
|
| 92 |
+
self.top_experts = args.top_experts
|
| 93 |
+
self.use_shared_expert = args.use_shared_expert
|
| 94 |
+
self.noisy_topk = args.noisy_topk
|
| 95 |
+
self.useauxFreeLoadBalancingLoss = args.useauxFreeLoadBalancingLoss
|
| 96 |
+
self.aux_free_bias_update_rate = args.aux_free_bias_update_rate
|
| 97 |
+
self.loss_scale = args.loss_scale
|
| 98 |
+
|
| 99 |
+
# Training Hyperparameters
|
| 100 |
+
self.epochs = args.epochs
|
| 101 |
+
self.max_lr = args.max_lr
|
| 102 |
+
self.weight_decay_optim = args.weight_decay_optim
|
| 103 |
+
self.beta_1 = args.beta_1
|
| 104 |
+
self.beta_2 = args.beta_2
|
| 105 |
+
self.eps = args.eps
|
| 106 |
+
self.clip = args.clip
|
| 107 |
+
|
| 108 |
+
# Regularization
|
| 109 |
+
self.dropout = args.dropout
|
| 110 |
+
self.attn_dropout = args.attn_dropout
|
| 111 |
+
|
| 112 |
+
# System Configuration
|
| 113 |
+
self.device = args.device
|
| 114 |
+
self.use_checkpointing = args.use_checkpointing
|
| 115 |
+
self.use_liger = args.use_liger
|
| 116 |
+
self.ignore_pad_token_in_loss = args.ignore_pad_token_in_loss
|
| 117 |
+
|
| 118 |
+
# Data Configuration
|
| 119 |
+
self.vocab_size = args.vocab_size
|
| 120 |
+
self.base_freq = args.base_freq
|
| 121 |
+
self.hf_token = args.hf_token
|
| 122 |
+
self.dataset = args.dataset
|
| 123 |
+
|
| 124 |
+
# Generation Parameters
|
| 125 |
+
self.generation_max_length = args.generation_max_length
|
| 126 |
+
self.generation_top_k = args.generation_top_k
|
| 127 |
+
self.generation_temperature = args.generation_temperature
|
| 128 |
+
|
| 129 |
+
# Logging and Checkpointing
|
| 130 |
+
self.log_interval = args.log_interval
|
| 131 |
+
self.save_interval = args.save_interval
|
| 132 |
+
self.eval_interval = args.eval_interval
|
| 133 |
+
self.eval_iters = args.eval_iters
|
| 134 |
+
self.warmup_iters = args.warmup_iters
|
| 135 |
+
self.total_iters = args.total_iters
|
| 136 |
+
self.lr_decay_iters = args.lr_decay_iters
|
| 137 |
+
self.wandb_project = args.wandb_project
|
| 138 |
+
self.wandb_run_name = args.wandb_run_name
|
| 139 |
+
|
| 140 |
+
# Batch Size Configuration
|
| 141 |
+
self.total_batch_size = args.total_batch_size
|
| 142 |
+
self.micro_batch_size = args.micro_batch_size if args.micro_batch_size else args.batch_size
|
| 143 |
+
self.gradient_accumulation_steps = self.total_batch_size // (self.micro_batch_size * self.block_size)
|
| 144 |
+
|
| 145 |
+
# Calculated parameters
|
| 146 |
+
self.min_lr = 0.1 * self.max_lr
|
| 147 |
+
self.save_checkpoint_iter = self.save_interval
|
| 148 |
+
self.eval_check = self.eval_interval
|
| 149 |
+
|
| 150 |
+
# Distributed Training
|
| 151 |
+
self.use_ddp = args.use_ddp
|
inference.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from config import ModelArgs
|
| 4 |
+
from model import DeepSeekV3
|
| 5 |
+
from tokenizer import Tokenizer
|
| 6 |
+
|
| 7 |
+
def topk_sampling(model, prompt, device, max_length=50, top_k=50, temperature=1.0, tokenizer=None, hf_token=None):
|
| 8 |
+
if tokenizer is None:
|
| 9 |
+
# Use default tokenizer if none provided
|
| 10 |
+
tokenizer_instance = Tokenizer(hf_token=hf_token)
|
| 11 |
+
tokenizer = tokenizer_instance.ready_tokenizer()
|
| 12 |
+
|
| 13 |
+
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
| 14 |
+
generated_tokens = []
|
| 15 |
+
|
| 16 |
+
if(len(input_ids[0]) < max_length):
|
| 17 |
+
max_length -= len(input_ids[0]) # If the input is longer than max_length, set max_length to the length of the input
|
| 18 |
+
else:
|
| 19 |
+
max_length = len(input_ids[0]) - max_length
|
| 20 |
+
for _ in range(max_length):
|
| 21 |
+
with torch.no_grad(), torch.autocast(device_type='cuda', dtype=torch.bfloat16):
|
| 22 |
+
# Pass inference=True to use the inference path in the model
|
| 23 |
+
outputs = model(input_ids, inference=True)
|
| 24 |
+
logits = outputs[:, -1, :]
|
| 25 |
+
logits = logits / temperature
|
| 26 |
+
probs = F.softmax(logits, dim=-1)
|
| 27 |
+
|
| 28 |
+
# Top-k filtering
|
| 29 |
+
top_k_probs, top_k_indices = torch.topk(probs, top_k, dim=-1)
|
| 30 |
+
|
| 31 |
+
# Sample from top-k
|
| 32 |
+
next_token = torch.multinomial(top_k_probs, num_samples=1)
|
| 33 |
+
|
| 34 |
+
xcol = torch.gather(top_k_indices, -1, next_token)
|
| 35 |
+
input_ids = torch.cat([input_ids, xcol], dim=1) #1 because is it the dimension of the sequence
|
| 36 |
+
|
| 37 |
+
if hasattr(tokenizer, 'eos_token_id') and tokenizer.eos_token_id and xcol.item() == tokenizer.eos_token_id:
|
| 38 |
+
break
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
return tokenizer.decode(input_ids[0])
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def save_text(file_path, step, text):
|
| 45 |
+
with open(file_path, 'w') as f:
|
| 46 |
+
f.write(f"Step {step}: {text}\n")
|
model.py
ADDED
|
@@ -0,0 +1,589 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import math
|
| 6 |
+
from torch.nn import RMSNorm
|
| 7 |
+
from config import ModelArgs
|
| 8 |
+
from tokenizer import Tokenizer
|
| 9 |
+
|
| 10 |
+
# Initialize tokenizer globally as None - will be set later
|
| 11 |
+
tokenizer = None
|
| 12 |
+
model_args = ModelArgs()
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def initialize_tokenizer(hf_token=None):
|
| 16 |
+
"""Initialize the global tokenizer with the provided HF token"""
|
| 17 |
+
global tokenizer
|
| 18 |
+
if tokenizer is None:
|
| 19 |
+
tokenizer_instance = Tokenizer(hf_token=hf_token)
|
| 20 |
+
tokenizer = tokenizer_instance.ready_tokenizer()
|
| 21 |
+
return tokenizer
|
| 22 |
+
|
| 23 |
+
class Normalization(nn.Module):
|
| 24 |
+
def __init__(
|
| 25 |
+
self,
|
| 26 |
+
embeddings_dims: int = model_args.embeddings_dims
|
| 27 |
+
):
|
| 28 |
+
super().__init__()
|
| 29 |
+
self.rmsnorm_layer = RMSNorm(embeddings_dims)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def forward(self, x):
|
| 33 |
+
|
| 34 |
+
x = self.rmsnorm_layer(x)
|
| 35 |
+
return x
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class Swish(nn.Module):
|
| 40 |
+
def __init__(
|
| 41 |
+
self,
|
| 42 |
+
block_size: int = model_args.block_size,
|
| 43 |
+
embeddings_dims: int = model_args.embeddings_dims,
|
| 44 |
+
device = model_args.device
|
| 45 |
+
):
|
| 46 |
+
super().__init__()
|
| 47 |
+
|
| 48 |
+
self.sig = torch.nn.Sigmoid()
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def forward(self, x):
|
| 52 |
+
swish = x * self.sig(x)
|
| 53 |
+
|
| 54 |
+
return swish
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class SWiGLUExpertMoE(nn.Module):
|
| 59 |
+
def __init__(
|
| 60 |
+
self,
|
| 61 |
+
block_size: int = model_args.block_size,
|
| 62 |
+
embeddings_dims: int = model_args.embeddings_dims,
|
| 63 |
+
device = model_args.device
|
| 64 |
+
):
|
| 65 |
+
super().__init__()
|
| 66 |
+
|
| 67 |
+
self.hidden_dims = (embeddings_dims * 2)
|
| 68 |
+
self.swish = Swish(block_size=block_size, embeddings_dims=embeddings_dims, device=device)
|
| 69 |
+
self.linear_layer1 = nn.Linear(in_features=embeddings_dims, out_features=self.hidden_dims, bias=False, device = device)
|
| 70 |
+
self.linear_layer2 = nn.Linear(in_features=embeddings_dims, out_features=self.hidden_dims, bias=False, device = device)
|
| 71 |
+
self.linear_layer3 = nn.Linear(in_features=self.hidden_dims, out_features=embeddings_dims, bias=False, device = device)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def forward(self, x):
|
| 77 |
+
swish_res = self.swish(self.linear_layer1(x))
|
| 78 |
+
x_V = self.linear_layer2(x)
|
| 79 |
+
res = torch.mul(swish_res, x_V)
|
| 80 |
+
out = self.linear_layer3(res)
|
| 81 |
+
return out
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
class MoeLayer(nn.Module):
|
| 86 |
+
def __init__(
|
| 87 |
+
self,
|
| 88 |
+
dropout = model_args.dropout,
|
| 89 |
+
embeddings_size = model_args.embeddings_dims,
|
| 90 |
+
device = model_args.device,
|
| 91 |
+
# inner_dimensional_states: int = 3072
|
| 92 |
+
):
|
| 93 |
+
super().__init__()
|
| 94 |
+
|
| 95 |
+
self.heads = nn.ModuleList([SWiGLUExpertMoE() for _ in range(model_args.experts)])
|
| 96 |
+
self.gate = nn.Linear(in_features=embeddings_size, out_features=model_args.experts, device=device, bias=False)
|
| 97 |
+
|
| 98 |
+
# Only create shared expert if enabled
|
| 99 |
+
if model_args.use_shared_expert:
|
| 100 |
+
self.shared_expert = SWiGLUExpertMoE()
|
| 101 |
+
else:
|
| 102 |
+
self.shared_expert = None
|
| 103 |
+
|
| 104 |
+
if(model_args.noisy_topk is True and model_args.use_checkpointing == False):
|
| 105 |
+
self.noise = nn.Linear(in_features=embeddings_size, out_features=model_args.experts, device=device, bias=False)
|
| 106 |
+
self.noisy_router = None
|
| 107 |
+
# self.outputs = torch.zeros((batch_size,block_size, embeddings_size), device=device) #batch size needs to be defined because we are accessing it explicitly
|
| 108 |
+
self.device = device
|
| 109 |
+
# self.shared_expert_out = torch.zeros((model_args.batch_size, model_args.embeddings_dims), device=device)
|
| 110 |
+
# self.b = torch.zeros((model_args.batch_size, model_args.block_size, model_args.experts), device=device)
|
| 111 |
+
|
| 112 |
+
if model_args.useauxFreeLoadBalancingLoss:
|
| 113 |
+
self.register_buffer('routing_bias', torch.zeros(model_args.experts, device=self.device))
|
| 114 |
+
# self.routing_bias = torch.zeros(model_args.experts, device=self.device)
|
| 115 |
+
self.bias_update_speed = model_args.aux_free_bias_update_rate
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def forward(self, x):
|
| 119 |
+
# mlp_weights_init = self.mlp.apply(weights_init)
|
| 120 |
+
self.gate_out = self.gate(x) #[bz, seq, num_experts]
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
if(model_args.noisy_topk == True and model_args.use_checkpointing == False):
|
| 124 |
+
noise = self.noise(x)
|
| 125 |
+
gaussian_noise = torch.normal(0, 1, size=self.gate_out.shape, device=self.device)
|
| 126 |
+
self.noisy_router = F.softplus(noise) * gaussian_noise
|
| 127 |
+
self.gate_out += self.noisy_router
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
shared_output = 0
|
| 132 |
+
out = 0
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
if model_args.useauxFreeLoadBalancingLoss:
|
| 137 |
+
|
| 138 |
+
self.gate_out += self.routing_bias
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
# Adjust top_k based on whether shared expert is used
|
| 144 |
+
top_k = model_args.top_experts
|
| 145 |
+
top_k_values, top_k_indices = torch.topk(self.gate_out, k=top_k) #[bs, seq len, top k]
|
| 146 |
+
# topkmask = torch.ones_like(top_k_values, device=self.device) # [bs, seq len, experts]
|
| 147 |
+
# indices = torch.arange(top_k_values.size(0), device=self.device).unsqueeze(1).unsqueeze(2) # [bs, 1, 1]
|
| 148 |
+
# topkvaluesMasked = top_k_values.masked_fill(indices != top_k_indices, float('-inf')) # Mask out negative values
|
| 149 |
+
masked = torch.full_like(self.gate_out, float('-1e20'), device=self.device)
|
| 150 |
+
masked_values = masked.scatter_(-1, top_k_indices, top_k_values)
|
| 151 |
+
probs = torch.nn.functional.softmax(masked_values, dim=-1) #[bs, seq len, top k]
|
| 152 |
+
|
| 153 |
+
out = torch.zeros_like(x)
|
| 154 |
+
if model_args.use_shared_expert and self.shared_expert is not None:
|
| 155 |
+
shared_output += self.shared_expert(x)
|
| 156 |
+
|
| 157 |
+
flat_x = x.view(-1, x.size(-1)) # Flatten the input for easier processing
|
| 158 |
+
|
| 159 |
+
for i in range(model_args.experts): # Iterate through each expert index (0 to num_experts-1)
|
| 160 |
+
# Determine which tokens routed to this expert 'i'
|
| 161 |
+
# top_k_indices is [bs, seq_len, self.top_k]
|
| 162 |
+
# We want a mask of shape [bs, seq_len] where True if expert 'i' is in the top_k for that token
|
| 163 |
+
expert_i_is_chosen_mask = (top_k_indices == i).any(dim=-1) # Check along the top_k dimension
|
| 164 |
+
# expert_i_is_chosen_mask has shape [bs, seq_len]
|
| 165 |
+
|
| 166 |
+
if not expert_i_is_chosen_mask.any(): # If expert 'i' was not chosen by any token
|
| 167 |
+
continue
|
| 168 |
+
|
| 169 |
+
# Flatten the mask to apply to flat_x
|
| 170 |
+
flat_expert_i_is_chosen_mask = expert_i_is_chosen_mask.reshape(-1) # Shape: [bs * seq_len]
|
| 171 |
+
|
| 172 |
+
# Select input tokens for this expert
|
| 173 |
+
selected_input_tokens = flat_x[flat_expert_i_is_chosen_mask] # Shape: [num_active_for_expert_i, embed_dim]
|
| 174 |
+
|
| 175 |
+
if selected_input_tokens.numel() == 0: # Should be caught by .any() above, but good check
|
| 176 |
+
continue
|
| 177 |
+
|
| 178 |
+
# Process through the expert
|
| 179 |
+
expert_output_for_selected = self.heads[i](selected_input_tokens)
|
| 180 |
+
|
| 181 |
+
# Get the routing probabilities for these chosen tokens specifically for expert 'i'
|
| 182 |
+
# routing_probs is [bs, seq_len, num_experts]
|
| 183 |
+
# expert_i_probs_original_shape = routing_probs[:, :, i] # Probabilities for expert 'i', shape [bs, seq_len]
|
| 184 |
+
# flat_expert_i_probs = expert_i_probs_original_shape.reshape(-1) # Shape [bs * seq_len]
|
| 185 |
+
# active_token_weights = flat_expert_i_probs[flat_expert_i_is_chosen_mask] # Shape: [num_active_for_expert_i]
|
| 186 |
+
|
| 187 |
+
# Alternative way to get weights directly using the mask on routing_probs for expert i:
|
| 188 |
+
# Get the [bs, seq_len] slice of probabilities for the current expert 'i'
|
| 189 |
+
probs_for_expert_i = probs[:, :, i] # Shape: [bs, seq_len]
|
| 190 |
+
# Now use the expert_i_is_chosen_mask (which is also [bs, seq_len]) to select the relevant weights
|
| 191 |
+
active_token_weights = probs_for_expert_i[expert_i_is_chosen_mask] # Shape: [num_active_for_expert_i]
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
weighted_expert_output = expert_output_for_selected * active_token_weights.unsqueeze(-1)
|
| 195 |
+
|
| 196 |
+
# Add this expert's contribution
|
| 197 |
+
temp_contribution_for_expert_i = torch.zeros_like(x) # Initialize with zeros
|
| 198 |
+
temp_contribution_for_expert_i.masked_scatter_(
|
| 199 |
+
expert_i_is_chosen_mask.unsqueeze(-1).expand_as(x), # Use the original 2D mask, expanded
|
| 200 |
+
weighted_expert_output
|
| 201 |
+
)
|
| 202 |
+
out = out + temp_contribution_for_expert_i
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
# for expert_idx in range(model_args.experts):
|
| 206 |
+
# # Create mask for current expert across all top_k positions
|
| 207 |
+
# expert_mask = (top_k_indices == expert_idx)
|
| 208 |
+
|
| 209 |
+
# # Sum probabilities for current expert
|
| 210 |
+
# expert_weights = (probs * expert_mask).sum(dim=-1) # [batch, seq_len]
|
| 211 |
+
|
| 212 |
+
# # Get inputs where expert is used
|
| 213 |
+
# selected = expert_weights > 0
|
| 214 |
+
# if not selected.any():
|
| 215 |
+
# continue
|
| 216 |
+
# # print(expert_weights.shape)
|
| 217 |
+
# # print(x[selected].shape)
|
| 218 |
+
|
| 219 |
+
# # Process all selected inputs through expert
|
| 220 |
+
# expert_out = self.heads[expert_idx](x[selected])
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
# # Weight and accumulate outputs
|
| 225 |
+
# out[selected] += expert_out * expert_weights[selected].unsqueeze(-1)
|
| 226 |
+
|
| 227 |
+
out = out + shared_output # Add shared expert output if enabled
|
| 228 |
+
|
| 229 |
+
if model_args.useauxFreeLoadBalancingLoss and self.training:
|
| 230 |
+
|
| 231 |
+
with torch.no_grad():
|
| 232 |
+
ci = probs.sum(dim=(0,1)) # Su of tokens for each expert
|
| 233 |
+
ci_avg = ci.mean()
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
error_i = ci_avg - ci
|
| 237 |
+
|
| 238 |
+
self.update = self.bias_update_speed * torch.sign(error_i) # Update routing bias
|
| 239 |
+
self.routing_bias.add_(self.update)
|
| 240 |
+
# self.routing_bias = self.routing_bias + self.update
|
| 241 |
+
|
| 242 |
+
return out
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
# import numpy as np
|
| 246 |
+
class SinusoidalPositionalEmbeddings(nn.Module):
|
| 247 |
+
def __init__(
|
| 248 |
+
self,
|
| 249 |
+
device,
|
| 250 |
+
embeddings_dims: int = model_args.embeddings_dims,
|
| 251 |
+
block_size: int = model_args.block_size,
|
| 252 |
+
batch_size: int = model_args.batch_size,
|
| 253 |
+
):
|
| 254 |
+
super().__init__()
|
| 255 |
+
|
| 256 |
+
self.embeddings_dims = embeddings_dims
|
| 257 |
+
self.block_size = block_size
|
| 258 |
+
self.batch_size = batch_size
|
| 259 |
+
self.device = device
|
| 260 |
+
|
| 261 |
+
# Create positional encoding matrix
|
| 262 |
+
pe = torch.zeros(block_size, embeddings_dims)
|
| 263 |
+
position = torch.arange(0, block_size, dtype=torch.float).unsqueeze(1)
|
| 264 |
+
div_term = torch.exp(torch.arange(0, embeddings_dims, 2).float() * (-math.log(10000.0) / embeddings_dims))
|
| 265 |
+
|
| 266 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
| 267 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
| 268 |
+
|
| 269 |
+
# Register as buffer so it's not a parameter but moves with the model
|
| 270 |
+
self.register_buffer('pe', pe.unsqueeze(0)) # Shape: [1, block_size, embeddings_dims]
|
| 271 |
+
|
| 272 |
+
def forward(self, x):
|
| 273 |
+
# x shape: [batch_size, seq_len, embeddings_dims]
|
| 274 |
+
batch_size, seq_len, _ = x.shape
|
| 275 |
+
|
| 276 |
+
# Add positional embeddings
|
| 277 |
+
# pe[:, :seq_len] ensures we only use the positional embeddings up to the sequence length
|
| 278 |
+
pos_emb = self.pe[:, :seq_len].to(x.device)
|
| 279 |
+
return pos_emb
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
class LatentAttention(nn.Module):
|
| 284 |
+
def __init__(
|
| 285 |
+
self,
|
| 286 |
+
attn_dropout = model_args.attn_dropout,
|
| 287 |
+
embeddings_dims = model_args.embeddings_dims,
|
| 288 |
+
no_of_heads = model_args.no_of_heads,
|
| 289 |
+
device = model_args.device
|
| 290 |
+
):
|
| 291 |
+
super().__init__()
|
| 292 |
+
self.head_size = embeddings_dims // no_of_heads
|
| 293 |
+
self.no_of_heads = no_of_heads
|
| 294 |
+
# if(model_args.use_flash_attention==False):
|
| 295 |
+
self.latent_dim = model_args.latent_dim
|
| 296 |
+
self.W_k = nn.Linear(in_features=self.latent_dim, out_features=self.head_size, device=device, bias=False)
|
| 297 |
+
self.W_v = nn.Linear(in_features=self.latent_dim, out_features=self.head_size, device=device, bias=False)
|
| 298 |
+
self.W_dkv = nn.Linear(in_features=model_args.embeddings_dims, out_features=self.latent_dim, device=device, bias=False) # 3 for query, key and value
|
| 299 |
+
self.query = nn.Linear(in_features=embeddings_dims, out_features=self.head_size, device=model_args.device, bias=False)
|
| 300 |
+
# self.keys = nn.Linear(in_features=embeddings_dims, out_features=self.head_size,device=model_args.device, bias=False)
|
| 301 |
+
# self.values = nn.Linear(in_features=embeddings_dims, out_features=self.head_size, device=model_args.device,bias=False)
|
| 302 |
+
# self.dropout = nn.Dropout(p = attn_dropout)
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
self.dropout = nn.Dropout(p = attn_dropout)
|
| 306 |
+
self.device = device
|
| 307 |
+
|
| 308 |
+
# Use sinusoidal positional embeddings instead of rotary
|
| 309 |
+
self.pos_embeddings = SinusoidalPositionalEmbeddings(embeddings_dims=self.head_size, device=device)
|
| 310 |
+
# self.register_buffer('absorbed_q', None)
|
| 311 |
+
# self.absorbed_q = None
|
| 312 |
+
|
| 313 |
+
def forward(self, x, kv_cache=None, mask=None):
|
| 314 |
+
batch_size, block_size, embd_dims = x.shape
|
| 315 |
+
|
| 316 |
+
# k = self.keys(x)
|
| 317 |
+
# q = self.query(x)
|
| 318 |
+
# v = self.values(x)
|
| 319 |
+
|
| 320 |
+
self.latent_matrix = self.W_dkv(x)
|
| 321 |
+
|
| 322 |
+
# print("q shape: ", q.shape)
|
| 323 |
+
|
| 324 |
+
# print("Shape of latent mat: ", self.query.weight.shape)
|
| 325 |
+
# print("Shape of compressed_k: ", self.W_k.weight.shape)
|
| 326 |
+
|
| 327 |
+
# if(self.absorbed_q is None):
|
| 328 |
+
self.absorbed_q = torch.matmul(self.query.weight.T , self.W_k.weight)
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
# weights = q @ torch.transpose(k, dim0=-2, dim1=-1) * (k.shape[-1] ** -0.5)
|
| 332 |
+
|
| 333 |
+
# if kv_cache is None:
|
| 334 |
+
if kv_cache is None:
|
| 335 |
+
kv_cache = self.latent_matrix
|
| 336 |
+
else:
|
| 337 |
+
# print(kv_cache)
|
| 338 |
+
# print("Shape of latent matrix: ", self.latent_matrix.shape)
|
| 339 |
+
# print("Shape of kv_cache: ", kv_cache.shape)
|
| 340 |
+
kv_cache = torch.cat([kv_cache, self.latent_matrix], dim=1)
|
| 341 |
+
|
| 342 |
+
self.compressed_k = self.W_k(kv_cache)
|
| 343 |
+
self.compressed_v = self.W_v(kv_cache)
|
| 344 |
+
|
| 345 |
+
q_res = torch.matmul(x , self.absorbed_q)
|
| 346 |
+
weights = q_res @ torch.transpose(kv_cache, dim0=-2, dim1=-1) * (self.head_size ** -0.5) # [batch_size, block_size, block_size]
|
| 347 |
+
# print("Shape of weights: ", weights.shape)
|
| 348 |
+
# print("Shape of kv_cache: ", kv_cache.shape)
|
| 349 |
+
if(mask is not None):
|
| 350 |
+
weights = weights.masked_fill(mask == 0, float('-1e20')) #Masking the attention weights
|
| 351 |
+
|
| 352 |
+
masked_table = torch.tril(torch.ones(q_res.shape[1], kv_cache.shape[1], device=model_args.device))
|
| 353 |
+
|
| 354 |
+
masked_values = weights.masked_fill(masked_table[: q_res.shape[1], : kv_cache.shape[1]] == 0, float('-1e20'))
|
| 355 |
+
weights_normalized = nn.functional.softmax(masked_values, dim=-1) #Normalize along the embeddings dimension for all the tokens
|
| 356 |
+
weights_normalized = self.dropout(weights_normalized)
|
| 357 |
+
|
| 358 |
+
# print("Shape of weights_normalized: ", weights_normalized.shape)
|
| 359 |
+
# Apply positional embeddings to the output
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
# print("Shape of compressed_v: ", self.compressed_v.shape)
|
| 365 |
+
out = weights_normalized @ self.compressed_v
|
| 366 |
+
|
| 367 |
+
# out = self.pos_embeddings(out)
|
| 368 |
+
return out, kv_cache
|
| 369 |
+
|
| 370 |
+
# MHA
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
class MHLA(nn.Module):
|
| 374 |
+
def __init__(
|
| 375 |
+
self,
|
| 376 |
+
device,
|
| 377 |
+
attn_dropout = model_args.attn_dropout,
|
| 378 |
+
embeddings_dims = model_args.embeddings_dims,
|
| 379 |
+
no_of_heads = model_args.no_of_heads,
|
| 380 |
+
):
|
| 381 |
+
super().__init__()
|
| 382 |
+
self.heads = nn.ModuleList([LatentAttention(attn_dropout=attn_dropout, embeddings_dims=embeddings_dims, no_of_heads=no_of_heads) for _ in range(no_of_heads)])
|
| 383 |
+
self.dropout = nn.Dropout(p = attn_dropout)
|
| 384 |
+
self.linear = nn.Linear(in_features=embeddings_dims, out_features=embeddings_dims, device=device, bias=False) # 12 (no of heads) * (batch_size) 64 = 768 -> gives out the text embeddings
|
| 385 |
+
|
| 386 |
+
def forward(self, x, kv_cache=None, mask=None):
|
| 387 |
+
# concat = torch.cat([head(x, kv_cache=kv_cache, mask=mask) for head in self.heads], dim=-1)
|
| 388 |
+
res = []
|
| 389 |
+
for head in self.heads:
|
| 390 |
+
head_out, kv_cache = head(x, kv_cache=kv_cache, mask=mask)
|
| 391 |
+
res.append(head_out)
|
| 392 |
+
concat = torch.cat(res, dim=-1) # Concatenate along the last dimension
|
| 393 |
+
linear_layer = self.linear(concat)
|
| 394 |
+
out = self.dropout(linear_layer)
|
| 395 |
+
return out, kv_cache
|
| 396 |
+
|
| 397 |
+
class FFN(nn.Module):
|
| 398 |
+
def __init__(self,
|
| 399 |
+
device,
|
| 400 |
+
embeddings_dims: int = model_args.embeddings_dims,
|
| 401 |
+
block_size: int = model_args.block_size,
|
| 402 |
+
vocab_size: int = model_args.vocab_size,
|
| 403 |
+
dropout = model_args.dropout
|
| 404 |
+
|
| 405 |
+
):
|
| 406 |
+
super().__init__()
|
| 407 |
+
|
| 408 |
+
self.linear_layer = nn.Linear(in_features=embeddings_dims, out_features=embeddings_dims, dtype=torch.float32, device = device)
|
| 409 |
+
self.linear_layer2 = nn.Linear(in_features=embeddings_dims, out_features=embeddings_dims, dtype=torch.float32, device = device)
|
| 410 |
+
|
| 411 |
+
self.dropout = nn.Dropout(p = dropout) # Uncommenting the dropout line
|
| 412 |
+
def forward(self, x):
|
| 413 |
+
|
| 414 |
+
x = self.linear_layer(x)
|
| 415 |
+
x = F.gelu(x)
|
| 416 |
+
x = self.linear_layer2(x)
|
| 417 |
+
x = F.gelu(x)
|
| 418 |
+
# x = self.dropout(x) # Uncommenting the dropout line
|
| 419 |
+
return x
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
class DecoderLayer(nn.Module):
|
| 428 |
+
def __init__(self,
|
| 429 |
+
device,
|
| 430 |
+
attn_dropout: float = model_args.attn_dropout,
|
| 431 |
+
no_of_heads: int = model_args.no_of_heads,
|
| 432 |
+
embeddings_dims: int = model_args.embeddings_dims,
|
| 433 |
+
dropout = model_args.dropout,
|
| 434 |
+
block_size: int = model_args.block_size,
|
| 435 |
+
vocab_size: int = model_args.vocab_size,
|
| 436 |
+
|
| 437 |
+
) :
|
| 438 |
+
super().__init__()
|
| 439 |
+
|
| 440 |
+
# self.base_freq = model_args.base_freq
|
| 441 |
+
# self.feedforward_network = FFN(embeddings_dims=embeddings_dims, block_size=block_size, vocab_size=vocab_size, device = device)
|
| 442 |
+
self.mha = MHLA(attn_dropout=attn_dropout, embeddings_dims=embeddings_dims, no_of_heads=no_of_heads, device=device)
|
| 443 |
+
self.layer_norm1 = Normalization(embeddings_dims=embeddings_dims)
|
| 444 |
+
self.layer_norm2 = Normalization(embeddings_dims=embeddings_dims)
|
| 445 |
+
# self.layer_norm3 = Normalization(embeddings_dims=embeddings_dims)
|
| 446 |
+
self.dropout = nn.Dropout(p = dropout)
|
| 447 |
+
|
| 448 |
+
self.moe_block = MoeLayer(dropout=dropout, embeddings_size=embeddings_dims)
|
| 449 |
+
|
| 450 |
+
def forward(self, x, kv_cache=None, ffn=None, mask=None):
|
| 451 |
+
|
| 452 |
+
out, kv_cache = self.mha(self.layer_norm1(x), kv_cache=kv_cache, mask=mask) #Very important step -> Layer Norm on input and then passes it to the subsequent blocks
|
| 453 |
+
x = x + out # Fixed: removed in-place operation
|
| 454 |
+
x = x + self.moe_block(self.layer_norm2(x)) #Very important step
|
| 455 |
+
|
| 456 |
+
return x, kv_cache
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
class Block(nn.Module):
|
| 460 |
+
def __init__(self,
|
| 461 |
+
device,
|
| 462 |
+
embeddings_dims: int = model_args.embeddings_dims,
|
| 463 |
+
no_of_decoder_layers: int = model_args.no_of_decoder_layers,
|
| 464 |
+
block_size: int = model_args.block_size,
|
| 465 |
+
vocab_size: int = model_args.vocab_size,
|
| 466 |
+
dropout = model_args.dropout
|
| 467 |
+
|
| 468 |
+
) :
|
| 469 |
+
super().__init__()
|
| 470 |
+
self.base_freq = model_args.base_freq
|
| 471 |
+
# self.embeddings = nn.Embedding(num_embeddings=vocab_size, embedding_dim=embeddings_dims, dtype=torch.float32, device = device)
|
| 472 |
+
self.decoder = nn.ModuleList(DecoderLayer(embeddings_dims=embeddings_dims, block_size=block_size, vocab_size=vocab_size, dropout=dropout, device = device) for _ in range(no_of_decoder_layers))
|
| 473 |
+
# self.linear_layer = nn.Linear(in_features=embeddings_dims, out_features=vocab_size, dtype=torch.float32, device = device)
|
| 474 |
+
self.dropout = nn.Dropout(p = dropout)
|
| 475 |
+
self.norm = Normalization(embeddings_dims)
|
| 476 |
+
|
| 477 |
+
#weight tying
|
| 478 |
+
# self.embeddings.weight = self.linear_layer.weight
|
| 479 |
+
|
| 480 |
+
self.apply(self._init_weights)
|
| 481 |
+
|
| 482 |
+
def _init_weights(self, module):
|
| 483 |
+
if isinstance(module, nn.Linear):
|
| 484 |
+
nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 485 |
+
|
| 486 |
+
if module.bias is not None:
|
| 487 |
+
nn.init.zeros_(module.bias)
|
| 488 |
+
elif isinstance(module, nn.Embedding):
|
| 489 |
+
nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
|
| 493 |
+
def forward(self, x, mask=None, actual_labels = None, inference=False):
|
| 494 |
+
index = 0
|
| 495 |
+
no_of_layers = 0
|
| 496 |
+
# x = self.embeddings(x)
|
| 497 |
+
# # x = self.dropout(x)
|
| 498 |
+
# if(mask is not None):
|
| 499 |
+
kv_cache = None
|
| 500 |
+
# x = x * mask
|
| 501 |
+
# # mask = mask.unsqueeze(-1)
|
| 502 |
+
# x = self.decoder(x)
|
| 503 |
+
for layer in self.decoder:
|
| 504 |
+
# if no_of_layers % 2 == 0:
|
| 505 |
+
# if no_of_layers % 4 == 0:
|
| 506 |
+
# # print("x shape: ", x.shape)
|
| 507 |
+
# x = layer(x, rope=False, ffn=True, mask=mask)
|
| 508 |
+
# x = layer(x, rope=True, ffn=True, mask=mask)
|
| 509 |
+
|
| 510 |
+
# # print("x shape: ", x.shape)
|
| 511 |
+
# else:
|
| 512 |
+
# # print("x shape local: ", x.shape)
|
| 513 |
+
# if no_of_layers % 4 == 0:
|
| 514 |
+
# # print("x shape: ", x.shape)
|
| 515 |
+
# x = layer(x, rope=False, ffn=False, mask=mask)
|
| 516 |
+
x, kv_cache = layer(x, kv_cache=kv_cache, ffn=None, mask=mask)
|
| 517 |
+
# print("x shape local: ", x.shape)
|
| 518 |
+
# no_of_layers += 1
|
| 519 |
+
# print(x.shape)
|
| 520 |
+
x = self.dropout(x)
|
| 521 |
+
x = 2 * ((model_args.no_of_decoder_layers) ** -0.5) * x
|
| 522 |
+
x = self.norm(x)
|
| 523 |
+
|
| 524 |
+
# if(inference):
|
| 525 |
+
# out = self.linear_layer(x)
|
| 526 |
+
# return out
|
| 527 |
+
# if(model_args.use_liger):
|
| 528 |
+
# # print("yo")
|
| 529 |
+
# y = x.contiguous().view(-1, model_args.embeddings_dims)
|
| 530 |
+
# if(actual_labels is not None):
|
| 531 |
+
# labels = actual_labels.contiguous().view(-1)
|
| 532 |
+
|
| 533 |
+
# # Pass linear layer weights FIRST as required [2][5]
|
| 534 |
+
# # ignore_index is already set during initialization
|
| 535 |
+
# loss = self.le_loss(self.linear_layer.weight, y, labels)
|
| 536 |
+
# return loss
|
| 537 |
+
# else:
|
| 538 |
+
# # print("Hi")
|
| 539 |
+
# out = self.linear_layer(x)
|
| 540 |
+
# return out
|
| 541 |
+
|
| 542 |
+
return x
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
class DeepSeekV3(nn.Module):
|
| 547 |
+
def __init__(self,
|
| 548 |
+
device,
|
| 549 |
+
embeddings_dims: int = model_args.embeddings_dims,
|
| 550 |
+
block_size: int = model_args.block_size,
|
| 551 |
+
vocab_size: int = model_args.vocab_size,
|
| 552 |
+
dropout = model_args.dropout
|
| 553 |
+
):
|
| 554 |
+
super().__init__()
|
| 555 |
+
self.decoder = Block(device=device, embeddings_dims=embeddings_dims, no_of_decoder_layers=model_args.no_of_decoder_layers, block_size=block_size, vocab_size=vocab_size, dropout=dropout)
|
| 556 |
+
self.embedding = nn.Embedding(num_embeddings=vocab_size, embedding_dim=embeddings_dims, dtype=torch.float32, device=device)
|
| 557 |
+
self.pos_embeddings = SinusoidalPositionalEmbeddings(embeddings_dims=embeddings_dims, device=device)
|
| 558 |
+
self.linear_layer = nn.Linear(in_features=embeddings_dims, out_features=vocab_size, dtype=torch.float32, device=device, bias=False)
|
| 559 |
+
# Weight tying - tie embedding and output projection weights
|
| 560 |
+
self.embedding.weight = self.linear_layer.weight
|
| 561 |
+
|
| 562 |
+
# Initialize the LigerFusedLinearCrossEntropyLoss for optimized training
|
| 563 |
+
if model_args.use_liger:
|
| 564 |
+
from liger_kernel.transformers import LigerFusedLinearCrossEntropyLoss
|
| 565 |
+
# Initialize with ignore_index for padding tokens if enabled
|
| 566 |
+
if model_args.ignore_pad_token_in_loss:
|
| 567 |
+
self.le_loss = LigerFusedLinearCrossEntropyLoss(
|
| 568 |
+
ignore_index=tokenizer.pad_token_id
|
| 569 |
+
)
|
| 570 |
+
else:
|
| 571 |
+
self.le_loss = LigerFusedLinearCrossEntropyLoss()
|
| 572 |
+
|
| 573 |
+
def forward(self, x, inference=False, mask=None):
|
| 574 |
+
if(mask is not None):
|
| 575 |
+
x = x * mask
|
| 576 |
+
|
| 577 |
+
x = self.embedding(x)
|
| 578 |
+
x = x + self.pos_embeddings(x) # Add positional embeddings
|
| 579 |
+
B, T, C = x.shape
|
| 580 |
+
|
| 581 |
+
if inference:
|
| 582 |
+
# For inference, we only need the last token prediction
|
| 583 |
+
decoder_out = self.decoder(x, mask=mask)
|
| 584 |
+
logits = self.linear_layer(decoder_out)
|
| 585 |
+
return logits
|
| 586 |
+
else:
|
| 587 |
+
decoder_out = self.decoder(x, mask=mask)
|
| 588 |
+
logits = self.linear_layer(decoder_out)
|
| 589 |
+
return logits
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
spaces
|
| 2 |
+
torch>=2.1.2
|
| 3 |
+
transformers>=4.36.0
|
| 4 |
+
datasets
|
| 5 |
+
tqdm
|
| 6 |
+
huggingface_hub
|
| 7 |
+
gradio
|
| 8 |
+
numpy
|
| 9 |
+
safetensors
|
tokenizer.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer
|
| 2 |
+
|
| 3 |
+
class Tokenizer:
|
| 4 |
+
|
| 5 |
+
def __init__(self, hf_token=None) -> None:
|
| 6 |
+
# Try to get token from environment if not provided
|
| 7 |
+
|
| 8 |
+
if hf_token:
|
| 9 |
+
print(f"[INFO] Using HF token for model access")
|
| 10 |
+
else:
|
| 11 |
+
print("[INFO] No HF token provided - using public models only")
|
| 12 |
+
|
| 13 |
+
self.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", token=hf_token)
|
| 14 |
+
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
| 15 |
+
|
| 16 |
+
def ready_tokenizer(self):
|
| 17 |
+
|
| 18 |
+
return self.tokenizer
|