# ─── monkey-patch gradio_client so bool schemas don’t crash json_schema_to_python_type ─── import gradio_client.utils as _gc_utils # back up originals _orig_get_type = _gc_utils.get_type _orig_json2py = _gc_utils._json_schema_to_python_type def _patched_get_type(schema): # treat any boolean schema as if it were an empty dict if isinstance(schema, bool): schema = {} return _orig_get_type(schema) def _patched_json_schema_to_python_type(schema, defs=None): # treat any boolean schema as if it were an empty dict if isinstance(schema, bool): schema = {} return _orig_json2py(schema, defs) _gc_utils.get_type = _patched_get_type _gc_utils._json_schema_to_python_type = _patched_json_schema_to_python_type # ─── now it’s safe to import Gradio and build your interface ─────────────────────────── import gradio as gr from gradio.themes import Soft import os import sys import argparse import tempfile import shutil import base64 import io import torch import selfies from rdkit import Chem import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt from matplotlib import cm from typing import Optional from transformers import EsmForMaskedLM, EsmTokenizer, AutoModel from torch.utils.data import DataLoader from Bio.PDB import PDBParser, MMCIFParser from Bio.Data import IUPACData from utils.drug_tokenizer import DrugTokenizer from utils.metric_learning_models_att_maps import Pre_encoded, FusionDTI from utils.foldseek_util import get_struc_seq # ───── Helpers ───────────────────────────────────────────────── three2one = {k.upper(): v for k, v in IUPACData.protein_letters_3to1.items()} three2one.update({"MSE": "M", "SEC": "C", "PYL": "K"}) def simple_seq_from_structure(path: str) -> str: parser = MMCIFParser(QUIET=True) if path.endswith(".cif") else PDBParser(QUIET=True) structure = parser.get_structure("P", path) chains = list(structure.get_chains()) if not chains: return "" chain = max(chains, key=lambda c: len(list(c.get_residues()))) return "".join(three2one.get(res.get_resname().upper(), "X") for res in chain) def smiles_to_selfies(smiles: str) -> Optional[str]: try: mol = Chem.MolFromSmiles(smiles) if mol is None: return None return selfies.encoder(smiles) except Exception: return None def parse_config(): p = argparse.ArgumentParser() p.add_argument("--prot_encoder_path", default="westlake-repl/SaProt_650M_AF2") p.add_argument("--drug_encoder_path", default="HUBioDataLab/SELFormer") p.add_argument("--agg_mode", type=str, default="mean_all_tok") p.add_argument("--group_size", type=int, default=1) p.add_argument("--fusion", default="CAN") p.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu") p.add_argument("--save_path_prefix", default="save_model_ckp/") p.add_argument("--dataset", default="Human") return p.parse_args() args = parse_config() DEVICE = args.device # ───── Load models & tokenizers ───────────────────────────────── prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path) prot_model = EsmForMaskedLM.from_pretrained(args.prot_encoder_path) drug_tokenizer = DrugTokenizer() drug_model = AutoModel.from_pretrained(args.drug_encoder_path) encoding = Pre_encoded(prot_model, drug_model, args).to(DEVICE) def collate_fn(batch): query1, query2, scores = zip(*batch) query_encodings1 = prot_tokenizer.batch_encode_plus( list(query1), max_length=512, padding="max_length", truncation=True, add_special_tokens=True, return_tensors="pt", ) query_encodings2 = drug_tokenizer.batch_encode_plus( list(query2), max_length=512, padding="max_length", truncation=True, add_special_tokens=True, return_tensors="pt", ) scores = torch.tensor(list(scores)) attention_mask1 = query_encodings1["attention_mask"].bool() attention_mask2 = query_encodings2["attention_mask"].bool() return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores def get_case_feature(model, loader): model.eval() with torch.no_grad(): for p_ids, p_mask, d_ids, d_mask, _ in loader: p_ids, p_mask = p_ids.to(DEVICE), p_mask.to(DEVICE) d_ids, d_mask = d_ids.to(DEVICE), d_mask.to(DEVICE) p_emb, d_emb = model.encoding(p_ids, p_mask, d_ids, d_mask) return [(p_emb.cpu(), d_emb.cpu(), p_ids.cpu(), d_ids.cpu(), p_mask.cpu(), d_mask.cpu(), None)] # ─────────────── visualisation ─────────────────────────────────────────── def _safe_is_special(tokenizer, tok: str) -> bool: # Some tokenisers expose different special token sets; fall back conservatively. special_sets = [] if hasattr(tokenizer, "all_special_tokens"): special_sets.append(set(tokenizer.all_special_tokens)) if hasattr(tokenizer, "special_tokens_map"): special_sets.extend(set(v) if isinstance(v, list) else {v} for v in tokenizer.special_tokens_map.values()) for s in special_sets: if tok in s: return True return False def visualize_attention(model, feats, drug_idx: Optional[int] = None) -> str: """ Render a Protein → Drug cross-attention heat-map and optional Top-30 residue table. """ model.eval() with torch.no_grad(): # ── unpack single-case tensors ─────────────────────────────────────────── p_emb, d_emb, p_ids, d_ids, p_mask, d_mask, _ = feats[0] p_emb, d_emb = p_emb.to(DEVICE), d_emb.to(DEVICE) p_mask, d_mask = p_mask.to(DEVICE), d_mask.to(DEVICE) # ── forward pass: Protein → Drug attention (B, n_p, n_d) ─────────────── _, att_pd = model(p_emb, d_emb, p_mask, d_mask) attn = att_pd.squeeze(0).cpu() # (n_p, n_d) # ── decode tokens (skip special symbols) ──────────────────────────────── def clean_ids(ids, tokenizer): toks = tokenizer.convert_ids_to_tokens(ids.tolist()) return [t for t in toks if not _safe_is_special(tokenizer, t)] p_tokens_full = clean_ids(p_ids[0], prot_tokenizer) p_indices_full = list(range(1, len(p_tokens_full) + 1)) d_tokens_full = clean_ids(d_ids[0], drug_tokenizer) d_indices_full = list(range(1, len(d_tokens_full) + 1)) # ── safety cut-off to match attn mat size ────────────────────────────── p_tokens = p_tokens_full[: attn.size(0)] p_indices = p_indices_full[: attn.size(0)] d_tokens = d_tokens_full[: attn.size(1)] d_indices = d_indices_full[: attn.size(1)] attn = attn[: len(p_tokens), : len(d_tokens)] orig_attn = attn.clone() # ── adaptive sparsity pruning ─────────────────────────────────────────── thr = attn.max().item() * 0.05 if attn.numel() > 0 else 0.0 row_keep = (attn.max(dim=1).values > thr) if attn.size(0) else torch.tensor([], dtype=torch.bool) col_keep = (attn.max(dim=0).values > thr) if attn.size(1) else torch.tensor([], dtype=torch.bool) if row_keep.sum().item() < 3 and attn.size(0) > 0: row_keep = torch.ones(attn.size(0), dtype=torch.bool) if col_keep.sum().item() < 3 and attn.size(1) > 0: col_keep = torch.ones(attn.size(1), dtype=torch.bool) attn = attn[row_keep][:, col_keep] p_tokens = [tok for keep, tok in zip(row_keep.tolist(), p_tokens) if keep] p_indices = [idx for keep, idx in zip(row_keep.tolist(), p_indices) if keep] d_tokens = [tok for keep, tok in zip(col_keep.tolist(), d_tokens) if keep] d_indices = [idx for keep, idx in zip(col_keep.tolist(), d_indices) if keep] # ── cap column count at 150 for readability ───────────────────────────── if attn.size(1) > 150: topc = torch.topk(attn.sum(0), k=150).indices attn = attn[:, topc] d_tokens = [d_tokens[i] for i in topc] d_indices = [d_indices[i] for i in topc] # ── draw heat-map ────────────────────────────────────────────────────── x_labels = [f"{idx}:{tok}" for idx, tok in zip(d_indices, d_tokens)] y_labels = [f"{idx}:{tok}" for idx, tok in zip(p_indices, p_tokens)] fig_w = min(22, max(8, len(x_labels) * 0.6)) fig_h = min(24, max(6, len(y_labels) * 0.8)) fig, ax = plt.subplots(figsize=(fig_w, fig_h)) im = ax.imshow(attn.numpy(), aspect="auto", cmap=cm.viridis, interpolation="nearest") ax.set_title("Protein → Drug Attention", pad=8, fontsize=11) ax.set_xticks(range(len(x_labels))) ax.set_xticklabels(x_labels, rotation=90, fontsize=8, ha="center", va="center") ax.tick_params(axis="x", top=True, bottom=False, labeltop=True, labelbottom=False, pad=27) ax.set_yticks(range(len(y_labels))) ax.set_yticklabels(y_labels, fontsize=7) ax.tick_params(axis="y", top=True, bottom=False, labeltop=True, labelbottom=False, pad=10) fig.colorbar(im, fraction=0.026, pad=0.01) fig.tight_layout() # build PNG / PDF buf_png = io.BytesIO() fig.savefig(buf_png, format="png", dpi=140) buf_png.seek(0) buf_pdf = io.BytesIO() fig.savefig(buf_pdf, format="pdf") buf_pdf.seek(0) plt.close(fig) png_b64 = base64.b64encode(buf_png.getvalue()).decode() pdf_b64 = base64.b64encode(buf_pdf.getvalue()).decode() html_heat = ( f"
" f"Download PDF" f"" f"" "" "
" ) # ───────────────────── Top-30 table (optional) ───────────────────── table_html = "" if drug_idx is not None and orig_attn.size(1) > 0 and 0 <= drug_idx < orig_attn.size(1): # map original 0-based drug_idx → pruned column col_pos = None if (drug_idx + 1) in d_indices: col_pos = d_indices.index(drug_idx + 1) elif 0 <= drug_idx < len(d_tokens): col_pos = drug_idx if col_pos is not None: col_vec = attn[:, col_pos] k = min(30, len(col_vec)) if k > 0: topk = torch.topk(col_vec, k=k).indices.tolist() # header cells header_cells = ( "Rank" + "".join( f"{r+1}" for r in range(len(topk)) ) ) residue_cells = ( "Residue" + "".join( f"{p_tokens[i]}" for i in topk ) ) position_cells = ( "Position" + "".join( f"{p_indices[i]}" for i in topk ) ) drug_tok_text = d_tokens[col_pos] orig_idx_disp = d_indices[col_pos] table_html = ( f"
" f"

" f"Drug atom #{orig_idx_disp} {drug_tok_text} → Top-30 Protein residues" f"

" f"" f"{header_cells}" f"{residue_cells}" f"{position_cells}" f"
" f"
" ) return table_html + html_heat # ───── Gradio Callbacks ───────────────────────────────────────── ROOT = os.path.dirname(os.path.abspath(__file__)) FOLDSEEK_BIN = os.path.join(ROOT, "bin", "foldseek") def extract_sequence_cb(structure_file): if structure_file is None or not os.path.exists(structure_file.name): return "" parsed = get_struc_seq(FOLDSEEK_BIN, structure_file.name, None, plddt_mask=False) first_chain = next(iter(parsed)) _, _, struct_seq = parsed[first_chain] return struct_seq def inference_cb(prot_seq, drug_seq, atom_idx): if not prot_seq: return "

Please extract or enter a protein sequence first.

" if not drug_seq.strip(): return "

Please enter a drug sequence.

" if not drug_seq.strip().startswith("["): conv = smiles_to_selfies(drug_seq.strip()) if conv is None: return "

SMILES→SELFIES conversion failed.

" drug_seq = conv loader = DataLoader([(prot_seq, drug_seq, 1)], batch_size=1, collate_fn=collate_fn) feats = get_case_feature(encoding, loader) model = FusionDTI(446, 768, args).to(DEVICE) ckpt = os.path.join(f"{args.save_path_prefix}{args.dataset}_{args.fusion}", "best_model.ckpt") if os.path.isfile(ckpt): model.load_state_dict(torch.load(ckpt, map_location=DEVICE)) return visualize_attention(model, feats, int(atom_idx)-1 if atom_idx else None) def clear_cb(): return "", "", None, "", None # ───── Theme & CSS ───────────────────────────────────────────── css = """ :root { --bg:#f7f7fb; --card:#ffffff; --border:#e6e7eb; --primary:#4f46e5; --primary-dark:#4338ca; --text:#0f172a; --muted:#6b7280; --radius:14px; --shadow:0 10px 30px rgba(15,23,42,.06); } *{box-sizing:border-box} html,body{background:var(--bg)!important;color:var(--text)!important;font-family:Inter,system-ui,Arial,sans-serif} h1{font-weight:700;font-size:32px;margin:22px 0 10px;text-align:center;letter-spacing:.2px} p,li,button,.gr-button,label,.gr-text{font-size:14px} /* Cards */ .card{ background:var(--card); border:1px solid var(--border); border-radius:var(--radius); box-shadow:var(--shadow); padding:24px; max-width:1100px; margin:0 auto 28px; } /* Project links */ .link-btn{ display:inline-flex; /* icon + text centred vertically */ align-items:center; justify-content:center; margin:0 8px; padding:10px 18px; border-radius:10px; color:#fff; font-weight:650; text-decoration:none; box-shadow:0 6px 18px rgba(79,70,229,.18); transition:transform .12s ease,filter .12s ease; } .link-btn:hover{transform:translateY(-1px);filter:brightness(1.03)} .link-btn svg{margin-right:6px;vertical-align:middle} .link-btn.project{background:linear-gradient(135deg,#10b981,#059669)} .link-btn.arxiv {background:linear-gradient(135deg,#ef4444,#dc2626)} .link-btn.github {background:linear-gradient(135deg,#3b82f6,#2563eb)} /* Labels & inputs */ #input-card label{font-weight:650!important;color:var(--text)!important} textarea, input, .gr-textbox, .gr-number{ border-radius:12px!important; border:1px solid var(--border)!important; } #input-card .gr-row, #input-card .gr-cols{gap:16px} /* Buttons */ .gr-button{min-height:42px!important; padding:0 18px!important; border-radius:12px!important; font-weight:700!important} .gr-button.primary, .gr-button-primary{ background:var(--primary)!important; border-color:var(--primary)!important; color:#fff!important } .gr-button.primary:hover, .gr-button-primary:hover{background:var(--primary-dark)!important;border-color:var(--primary-dark)!important} /* Action buttons row */ #action-buttons{gap:12px} #extract-btn, #inference-btn{flex:1 1 260px!important; min-width:180px!important} #clear-btn{width:100%!important} /* Output */ #output-card{padding-top:0} #result-html{padding:0; margin:0} #result-html .heatmap-card{ background:var(--card); border:1px solid var(--border); border-radius:12px; padding:12px; box-shadow:var(--shadow) } /* Guidance */ #guidelines-card h2{font-size:18px;margin-bottom:14px;text-align:center} #guidelines-card ul{margin-left:18px;line-height:1.6} /* Small screens */ @media (max-width: 900px){ .card{margin:0 12px 24px} } """ # ───── Gradio Interface Definition ─────────────────────────────── with gr.Blocks(theme=Soft(primary_hue="indigo", neutral_hue="slate"), css=css) as demo: # ───────────── Title ───────────── gr.Markdown("

Token-level Visualiser for Drug-Target Interaction

") # ───────────── Project Links (SVG icons) ───────────── gr.HTML("""
Project Page ArXiv: 2406.01651 GitHub Repo
""") # ───────────── Guidelines Card ───────────── gr.HTML( """

Guidelines for Users

""" ) # ───────────── Input Card ───────────── with gr.Column(elem_id="input-card", elem_classes="card"): protein_seq = gr.Textbox( label="Protein Structure-aware Sequence", lines=3, elem_id="protein-seq" ) drug_seq = gr.Textbox( label="Drug Sequence (SELFIES/SMILES)", lines=3, elem_id="drug-seq" ) structure_file = gr.File( label="Upload Protein Structure (.pdb/.cif)", file_types=[".pdb", ".cif"], elem_id="structure-file" ) drug_idx = gr.Number( label="Drug atom/substructure index (1-based)", value=None, precision=0, elem_id="drug-idx" ) # ───────────── Action Buttons ───────────── with gr.Row(elem_id="action-buttons", equal_height=True): btn_extract = gr.Button("Extract sequence", variant="primary", elem_id="extract-btn") btn_infer = gr.Button("Inference", variant="primary", elem_id="inference-btn") with gr.Row(): clear_btn = gr.Button("Clear", variant="secondary", elem_id="clear-btn") # ───────────── Output Visualisation ───────────── output_html = gr.HTML(elem_id="result-html") # ───────────── Event Wiring ───────────── btn_extract.click( fn=extract_sequence_cb, inputs=[structure_file], outputs=[protein_seq] ) btn_infer.click( fn=inference_cb, inputs=[protein_seq, drug_seq, drug_idx], outputs=[output_html] ) clear_btn.click( fn=clear_cb, inputs=[], outputs=[protein_seq, drug_seq, drug_idx, output_html, structure_file] ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860, share=True)