File size: 8,851 Bytes
3bf8430
 
 
 
 
 
 
 
 
 
7769657
3bf8430
 
1cbc0f5
 
 
 
 
 
 
 
3bf8430
 
 
 
 
 
 
 
1cbc0f5
7769657
 
1cbc0f5
7769657
1cbc0f5
c4bedee
 
 
 
 
 
 
 
 
1cbc0f5
7769657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bf8430
1cbc0f5
 
 
 
3bf8430
1cbc0f5
 
3bf8430
 
 
 
 
 
c4bedee
 
 
 
 
3bf8430
1cbc0f5
 
 
3bf8430
1cbc0f5
 
 
 
 
3bf8430
1cbc0f5
3bf8430
1cbc0f5
 
 
 
 
3bf8430
1cbc0f5
3bf8430
1cbc0f5
 
 
 
 
 
 
 
 
 
3bf8430
1cbc0f5
3bf8430
1cbc0f5
 
 
 
 
3bf8430
 
1cbc0f5
 
3bf8430
 
 
 
1cbc0f5
3bf8430
 
1cbc0f5
3bf8430
 
1cbc0f5
3bf8430
 
 
1cbc0f5
3bf8430
1cbc0f5
 
 
 
 
3bf8430
1cbc0f5
3bf8430
1cbc0f5
 
 
 
 
3bf8430
 
 
 
 
 
 
c4bedee
 
3bf8430
 
c4bedee
 
 
 
 
3bf8430
1cbc0f5
3bf8430
1cbc0f5
 
 
 
 
3bf8430
1cbc0f5
 
3bf8430
1cbc0f5
3bf8430
1cbc0f5
 
 
 
 
3bf8430
1cbc0f5
3bf8430
 
1cbc0f5
3bf8430
1cbc0f5
 
 
 
 
3bf8430
 
 
 
 
 
 
 
c4bedee
 
 
3bf8430
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

"""
RLVE-Gym Environment Implementation.
"""

import os
from typing import Optional, Tuple
import random

from openenv_core.env_server.interfaces import Environment

from models import RlveGymState, RlveGymAction, RlveGymObservation
from server.Gym.environment import VerifiableEnvironment
from server.Gym.parameter_controller import ParameterController
from server.Gym.environments import identifier2environment
from server.Gym.parameter_controllers import identifier2controller


class RlveGymEnvironment(Environment):
    """
    Wrap any verifiable environment from RLVE-Gym behind the OpenEnv ``Environment`` API.
    """

    def __init__(
        self,
        environment_identifier: str = None,
        difficulty: int = None,
        answer_markers: Optional[Tuple[str, str]] = None,
        initial_seed: int = None,
    ):
        """
        Initialize the RLVE_Gym environment.

        Args:
            environment_identifier (str): The environment's identifier. Check server/Gym/environments/__init__.py for detailed usage.
            difficulty (int): The difficulty of generated problems.
            answer_markers (Tuple[str] of length 2): How the environment extracts the final answer from a model output.
            initial_seed (int): The initial seed to use when generating the first problem. Whenever reset() is called, the seed will be incremented by 1.
        """

        if environment_identifier is not None :
            self.environment_identifier = environment_identifier
        else :
            self.environment_identifier = os.getenv("RLVEGYM_ENVIRONMENT_IDENTIFIER", default = "Multiplication")
        
        if difficulty is not None :
            self.difficulty = difficulty
        else :
            self.difficulty = int(os.getenv("RLVEGYM_DIFFICULTY", default = "0"))
        
        if answer_markers is not None :
            self.answer_markers = answer_markers
        else :
            self.answer_markers = (os.getenv("RLVEGYM_ANSWER_MARKER_START", default = r"<answer>"), os.getenv("RLVEGYM_ANSWER_MARKER_END", default = r"</answer>"))
        
        if initial_seed is not None :
            pass
        else :
            initial_seed = int(os.getenv("RLVEGYM_INITIAL_SEED", default = "0"))

        self._state = RlveGymState(
            seed=initial_seed,
            problem_input=None,
            num_samples=0,
            sum_accuracy=0,
        )

        self.problem = None

    def reset(self) -> RlveGymObservation:
        """
        Reset the environment.

        Returns:
            problem_input (Optional[str]): The input of the problem; if it is None, it means that the problem generation has not been run or has failed.
            verifier_result (Optional[dict]): Contains reward as the raw reward, accuracy as the 0/1 correctness, and format_score as the 0/1 format correctness; if it is None, it means that the verification has failed.
            success (bool): True or False indicates whether the operation succeeded.
            message (str): The explanation of success.
            reward (Optional[float]): The value is verifier_result["reward"] when verifier_result is not None (otherwise, reward is also None).
        """
        if (self.environment_identifier not in identifier2environment) or (
            self.environment_identifier not in identifier2controller
        ):
            return RlveGymObservation(
                problem_input=None,
                verifier_result=None,
                success=False,
                message="Invalid environment identifier.",
                reward=None,
            )
        if not (isinstance(self.difficulty, int) and self.difficulty >= 0):
            return RlveGymObservation(
                problem_input=None,
                verifier_result=None,
                success=False,
                message="Difficulty should be a non-negative integer.",
                reward=None,
            )
        if not (isinstance(self._state.seed, int) and self._state.seed >= 0):
            return RlveGymObservation(
                problem_input=None,
                verifier_result=None,
                success=False,
                message="Seed should be a non-negative integer.",
                reward=None,
            )

        try:
            problem: VerifiableEnvironment = identifier2environment[self.environment_identifier](
                answer_markers=self.answer_markers
            )
        except Exception as e:
            return RlveGymObservation(
                problem_input=None,
                verifier_result=None,
                success=False,
                message=f"Failed to initialize environment: {e}",
                reward=None,
            )

        controller: ParameterController = identifier2controller[self.environment_identifier]()
        for _ in range(self.difficulty):
            controller.update()
        random.seed(self._state.seed)
        parameter = random.choice(controller.get_parameter_list())

        if problem.generator(seed=self._state.seed, parameter=parameter):
            self._state.problem_input = problem.prompt_generator()
            self.problem = problem
        else:
            self._state.problem_input = None
            self.problem = None

        self._state.seed += 1
        self._state.num_samples = self._state.sum_accuracy = 0

        if self.problem is not None:
            return RlveGymObservation(
                problem_input=self._state.problem_input,
                verifier_result=None,
                success=True,
                message="Problem generated successfully.",
                reward=None,
            )
        else:
            return RlveGymObservation(
                problem_input=None,
                verifier_result=None,
                success=False,
                message="Problem generation failed. Please try decreasing difficulty or changing seed.",
                reward=None,
            )

    def step(self, action: RlveGymAction) -> RlveGymObservation:  # type: ignore[override]
        """
        Execute a step in the environment by verifying the model output.

        Args:
            action (RlveGymAction): Contains a single field:
                - output (str): The model's output to get verified.

        Returns:
            problem_input (Optional[str]): The input of the problem; if it is None, it means that the problem generation has not been run or has failed.
            verifier_result (Optional[dict]): Contains reward as the raw reward, accuracy as the 0/1 correctness, and format_score as the 0/1 format correctness; if it is None, it means that the verification has failed.
            success (bool): True or False indicates whether the operation succeeded.
            message (str): The explanation of success.
            reward (Optional[float]): The value is verifier_result["reward"] when verifier_result is not None (otherwise, reward is also None).
        """
        if self.problem is None:
            return RlveGymObservation(
                problem_input=None,
                verifier_result=None,
                success=False,
                message="Problem not ready. Please reset the environment.",
                reward=None,
            )

        try:
            verifier_result = self.problem.verifier(action.output)
        except Exception as e:
            return RlveGymObservation(
                problem_input=self._state.problem_input,
                verifier_result=None,
                success=False,
                message=f"Verification failed with error: {e}",
                reward=None,
            )

        self._state.num_samples += 1
        self._state.sum_accuracy += verifier_result["accuracy"]

        return RlveGymObservation(
            problem_input=self._state.problem_input,
            verifier_result=verifier_result,
            success=True,
            message="Verification completed.",
            reward=verifier_result["reward"],
        )

    @property
    def state(self) -> RlveGymState:
        """
        Get the current environment state.

        Returns:
            seed (int): The seed to use when running reset().
            problem_input (Optional[str]): The input of the problem; if it is None, it means that the problem generation has not been run, or it failed.
            num_samples (int) and sum_accuracy (int): The statistics of the result of `step(action)` so far for the current problem (the number of outputs sent to the verifier and the number of correct ones).
        """
        return self._state