Spaces:
Runtime error
Runtime error
update
Browse files- app.py +199 -14
- app_001.py +199 -0
- inference.py +81 -0
app.py
CHANGED
|
@@ -54,10 +54,8 @@ You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
|
|
| 54 |
</center>
|
| 55 |
'''
|
| 56 |
|
| 57 |
-
os.system("git clone https://github.com/
|
| 58 |
-
sys.path.append("
|
| 59 |
-
|
| 60 |
-
from ReVersion.inference import *
|
| 61 |
|
| 62 |
def show_warning(warning_text: str) -> gr.Blocks:
|
| 63 |
with gr.Blocks() as demo:
|
|
@@ -72,6 +70,172 @@ def update_output_files() -> dict:
|
|
| 72 |
return gr.update(value=paths or None)
|
| 73 |
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
def find_weight_files() -> list[str]:
|
| 76 |
curr_dir = pathlib.Path(__file__).parent
|
| 77 |
paths = sorted(curr_dir.rglob('*.bin'))
|
|
@@ -88,8 +252,8 @@ def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
|
| 88 |
with gr.Row():
|
| 89 |
with gr.Column():
|
| 90 |
base_model = gr.Dropdown(
|
| 91 |
-
choices=['
|
| 92 |
-
value='
|
| 93 |
label='Base Model',
|
| 94 |
visible=True)
|
| 95 |
resolution = gr.Dropdown(choices=[512, 768],
|
|
@@ -98,12 +262,12 @@ def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
|
| 98 |
visible=True)
|
| 99 |
reload_button = gr.Button('Reload Weight List')
|
| 100 |
weight_name = gr.Dropdown(choices=find_weight_files(),
|
| 101 |
-
value='
|
| 102 |
-
label='
|
| 103 |
prompt = gr.Textbox(
|
| 104 |
label='Prompt',
|
| 105 |
max_lines=1,
|
| 106 |
-
placeholder='Example: "cat
|
| 107 |
seed = gr.Slider(label='Seed',
|
| 108 |
minimum=0,
|
| 109 |
maximum=100000,
|
|
@@ -175,6 +339,27 @@ def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
|
| 175 |
return demo
|
| 176 |
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
pipe = InferencePipeline()
|
| 179 |
trainer = Trainer()
|
| 180 |
|
|
@@ -189,12 +374,12 @@ with gr.Blocks(css='style.css') as demo:
|
|
| 189 |
gr.Markdown(DETAILDESCRIPTION)
|
| 190 |
|
| 191 |
with gr.Tabs():
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
with gr.TabItem('
|
| 195 |
create_inference_demo(pipe)
|
| 196 |
-
|
| 197 |
-
|
| 198 |
|
| 199 |
demo.queue(default_enabled=False).launch(share=False)
|
| 200 |
|
|
|
|
| 54 |
</center>
|
| 55 |
'''
|
| 56 |
|
| 57 |
+
os.system("git clone https://github.com/adobe-research/custom-diffusion")
|
| 58 |
+
sys.path.append("custom-diffusion")
|
|
|
|
|
|
|
| 59 |
|
| 60 |
def show_warning(warning_text: str) -> gr.Blocks:
|
| 61 |
with gr.Blocks() as demo:
|
|
|
|
| 70 |
return gr.update(value=paths or None)
|
| 71 |
|
| 72 |
|
| 73 |
+
def create_training_demo(trainer: Trainer,
|
| 74 |
+
pipe: InferencePipeline) -> gr.Blocks:
|
| 75 |
+
with gr.Blocks() as demo:
|
| 76 |
+
base_model = gr.Dropdown(
|
| 77 |
+
choices=['stabilityai/stable-diffusion-2-1-base', 'CompVis/stable-diffusion-v1-4'],
|
| 78 |
+
value='CompVis/stable-diffusion-v1-4',
|
| 79 |
+
label='Base Model',
|
| 80 |
+
visible=True)
|
| 81 |
+
resolution = gr.Dropdown(choices=['512', '768'],
|
| 82 |
+
value='512',
|
| 83 |
+
label='Resolution',
|
| 84 |
+
visible=True)
|
| 85 |
+
|
| 86 |
+
with gr.Row():
|
| 87 |
+
with gr.Box():
|
| 88 |
+
concept_images_collection = []
|
| 89 |
+
concept_prompt_collection = []
|
| 90 |
+
class_prompt_collection = []
|
| 91 |
+
buttons_collection = []
|
| 92 |
+
delete_collection = []
|
| 93 |
+
is_visible = []
|
| 94 |
+
maximum_concepts = 3
|
| 95 |
+
row = [None] * maximum_concepts
|
| 96 |
+
for x in range(maximum_concepts):
|
| 97 |
+
ordinal = lambda n: "%d%s" % (n, "tsnrhtdd"[(n // 10 % 10 != 1) * (n % 10 < 4) * n % 10::4])
|
| 98 |
+
ordinal_concept = ["<new1> cat", "<new2> wooden pot", "<new3> chair"]
|
| 99 |
+
if(x == 0):
|
| 100 |
+
visible = True
|
| 101 |
+
is_visible.append(gr.State(value=True))
|
| 102 |
+
else:
|
| 103 |
+
visible = False
|
| 104 |
+
is_visible.append(gr.State(value=False))
|
| 105 |
+
|
| 106 |
+
concept_images_collection.append(gr.Files(label=f'''Upload the images for your {ordinal(x+1) if (x>0) else ""} concept''', visible=visible))
|
| 107 |
+
with gr.Column(visible=visible) as row[x]:
|
| 108 |
+
concept_prompt_collection.append(
|
| 109 |
+
gr.Textbox(label=f'''{ordinal(x+1) if (x>0) else ""} concept prompt ''', max_lines=1,
|
| 110 |
+
placeholder=f'''Example: "photo of a {ordinal_concept[x]}"''' )
|
| 111 |
+
)
|
| 112 |
+
class_prompt_collection.append(
|
| 113 |
+
gr.Textbox(label=f'''{ordinal(x+1) if (x>0) else ""} class prompt ''',
|
| 114 |
+
max_lines=1, placeholder=f'''Example: "{ordinal_concept[x][7:]}"''')
|
| 115 |
+
)
|
| 116 |
+
with gr.Row():
|
| 117 |
+
if(x < maximum_concepts-1):
|
| 118 |
+
buttons_collection.append(gr.Button(value=f"Add {ordinal(x+2)} concept", visible=visible))
|
| 119 |
+
if(x > 0):
|
| 120 |
+
delete_collection.append(gr.Button(value=f"Delete {ordinal(x+1)} concept"))
|
| 121 |
+
|
| 122 |
+
counter_add = 1
|
| 123 |
+
for button in buttons_collection:
|
| 124 |
+
if(counter_add < len(buttons_collection)):
|
| 125 |
+
button.click(lambda:
|
| 126 |
+
[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), True, None],
|
| 127 |
+
None,
|
| 128 |
+
[row[counter_add], concept_images_collection[counter_add], buttons_collection[counter_add-1], buttons_collection[counter_add], is_visible[counter_add], concept_images_collection[counter_add]], queue=False)
|
| 129 |
+
else:
|
| 130 |
+
button.click(lambda:
|
| 131 |
+
[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), True],
|
| 132 |
+
None,
|
| 133 |
+
[row[counter_add], concept_images_collection[counter_add], buttons_collection[counter_add-1], is_visible[counter_add]], queue=False)
|
| 134 |
+
counter_add += 1
|
| 135 |
+
|
| 136 |
+
counter_delete = 1
|
| 137 |
+
for delete_button in delete_collection:
|
| 138 |
+
if(counter_delete < len(delete_collection)+1):
|
| 139 |
+
if counter_delete == 1:
|
| 140 |
+
delete_button.click(lambda:
|
| 141 |
+
[gr.update(visible=False, value=None),gr.update(visible=False), gr.update(visible=True), gr.update(visible=False),False],
|
| 142 |
+
None,
|
| 143 |
+
[concept_images_collection[counter_delete], row[counter_delete], buttons_collection[counter_delete-1], buttons_collection[counter_delete], is_visible[counter_delete]], queue=False)
|
| 144 |
+
else:
|
| 145 |
+
delete_button.click(lambda:
|
| 146 |
+
[gr.update(visible=False, value=None),gr.update(visible=False), gr.update(visible=True), False],
|
| 147 |
+
None,
|
| 148 |
+
[concept_images_collection[counter_delete], row[counter_delete], buttons_collection[counter_delete-1], is_visible[counter_delete]], queue=False)
|
| 149 |
+
counter_delete += 1
|
| 150 |
+
gr.Markdown('''
|
| 151 |
+
- We use "\<new1\>" modifier_token in front of the concept, e.g., "\<new1\> cat". For multiple concepts use "\<new2\>", "\<new3\>" etc. Increase the number of steps with more concepts.
|
| 152 |
+
- For a new concept an e.g. concept prompt is "photo of a \<new1\> cat" and "cat" for class prompt.
|
| 153 |
+
- For a style concept, use "painting in the style of \<new1\> art" for concept prompt and "art" for class prompt.
|
| 154 |
+
- Class prompt should be the object category.
|
| 155 |
+
- If "Train Text Encoder", disable "modifier token" and use any unique text to describe the concept e.g. "ktn cat".
|
| 156 |
+
''')
|
| 157 |
+
with gr.Box():
|
| 158 |
+
gr.Markdown('Training Parameters')
|
| 159 |
+
with gr.Row():
|
| 160 |
+
modifier_token = gr.Checkbox(label='modifier token',
|
| 161 |
+
value=True)
|
| 162 |
+
train_text_encoder = gr.Checkbox(label='Train Text Encoder',
|
| 163 |
+
value=False)
|
| 164 |
+
num_training_steps = gr.Number(
|
| 165 |
+
label='Number of Training Steps', value=1000, precision=0)
|
| 166 |
+
learning_rate = gr.Number(label='Learning Rate', value=0.00001)
|
| 167 |
+
batch_size = gr.Number(
|
| 168 |
+
label='batch_size', value=1, precision=0)
|
| 169 |
+
with gr.Row():
|
| 170 |
+
use_8bit_adam = gr.Checkbox(label='Use 8bit Adam', value=True)
|
| 171 |
+
gradient_checkpointing = gr.Checkbox(label='Enable gradient checkpointing', value=False)
|
| 172 |
+
with gr.Accordion('Other Parameters', open=False):
|
| 173 |
+
gradient_accumulation = gr.Number(
|
| 174 |
+
label='Number of Gradient Accumulation',
|
| 175 |
+
value=1,
|
| 176 |
+
precision=0)
|
| 177 |
+
num_reg_images = gr.Number(
|
| 178 |
+
label='Number of Class Concept images',
|
| 179 |
+
value=200,
|
| 180 |
+
precision=0)
|
| 181 |
+
gen_images = gr.Checkbox(label='Generated images as regularization',
|
| 182 |
+
value=False)
|
| 183 |
+
gr.Markdown('''
|
| 184 |
+
- It will take about ~10 minutes to train for 1000 steps and ~21GB on a 3090 GPU.
|
| 185 |
+
- Our results in the paper are trained with batch-size 4 (8 including class regularization samples).
|
| 186 |
+
- Enable gradient checkpointing for lower memory requirements (~14GB) at the expense of slower backward pass.
|
| 187 |
+
- Note that your trained models will be deleted when the second training is started. You can upload your trained model in the "Upload" tab.
|
| 188 |
+
- We retrieve real images for class concept using clip_retireval library which can take some time.
|
| 189 |
+
''')
|
| 190 |
+
|
| 191 |
+
run_button = gr.Button('Start Training')
|
| 192 |
+
with gr.Box():
|
| 193 |
+
with gr.Row():
|
| 194 |
+
check_status_button = gr.Button('Check Training Status')
|
| 195 |
+
with gr.Column():
|
| 196 |
+
with gr.Box():
|
| 197 |
+
gr.Markdown('Message')
|
| 198 |
+
training_status = gr.Markdown()
|
| 199 |
+
output_files = gr.Files(label='Trained Weight Files')
|
| 200 |
+
|
| 201 |
+
run_button.click(fn=pipe.clear,
|
| 202 |
+
inputs=None,
|
| 203 |
+
outputs=None,)
|
| 204 |
+
run_button.click(fn=trainer.run,
|
| 205 |
+
inputs=[
|
| 206 |
+
base_model,
|
| 207 |
+
resolution,
|
| 208 |
+
num_training_steps,
|
| 209 |
+
learning_rate,
|
| 210 |
+
train_text_encoder,
|
| 211 |
+
modifier_token,
|
| 212 |
+
gradient_accumulation,
|
| 213 |
+
batch_size,
|
| 214 |
+
use_8bit_adam,
|
| 215 |
+
gradient_checkpointing,
|
| 216 |
+
gen_images,
|
| 217 |
+
num_reg_images,
|
| 218 |
+
] +
|
| 219 |
+
concept_images_collection +
|
| 220 |
+
concept_prompt_collection +
|
| 221 |
+
class_prompt_collection
|
| 222 |
+
,
|
| 223 |
+
outputs=[
|
| 224 |
+
training_status,
|
| 225 |
+
output_files,
|
| 226 |
+
],
|
| 227 |
+
queue=False)
|
| 228 |
+
check_status_button.click(fn=trainer.check_if_running,
|
| 229 |
+
inputs=None,
|
| 230 |
+
outputs=training_status,
|
| 231 |
+
queue=False)
|
| 232 |
+
check_status_button.click(fn=update_output_files,
|
| 233 |
+
inputs=None,
|
| 234 |
+
outputs=output_files,
|
| 235 |
+
queue=False)
|
| 236 |
+
return demo
|
| 237 |
+
|
| 238 |
+
|
| 239 |
def find_weight_files() -> list[str]:
|
| 240 |
curr_dir = pathlib.Path(__file__).parent
|
| 241 |
paths = sorted(curr_dir.rglob('*.bin'))
|
|
|
|
| 252 |
with gr.Row():
|
| 253 |
with gr.Column():
|
| 254 |
base_model = gr.Dropdown(
|
| 255 |
+
choices=['stabilityai/stable-diffusion-2-1-base', 'CompVis/stable-diffusion-v1-4'],
|
| 256 |
+
value='CompVis/stable-diffusion-v1-4',
|
| 257 |
label='Base Model',
|
| 258 |
visible=True)
|
| 259 |
resolution = gr.Dropdown(choices=[512, 768],
|
|
|
|
| 262 |
visible=True)
|
| 263 |
reload_button = gr.Button('Reload Weight List')
|
| 264 |
weight_name = gr.Dropdown(choices=find_weight_files(),
|
| 265 |
+
value='custom-diffusion-models/cat.bin',
|
| 266 |
+
label='Custom Diffusion Weight File')
|
| 267 |
prompt = gr.Textbox(
|
| 268 |
label='Prompt',
|
| 269 |
max_lines=1,
|
| 270 |
+
placeholder='Example: "\<new1\> cat in outer space"')
|
| 271 |
seed = gr.Slider(label='Seed',
|
| 272 |
minimum=0,
|
| 273 |
maximum=100000,
|
|
|
|
| 339 |
return demo
|
| 340 |
|
| 341 |
|
| 342 |
+
def create_upload_demo() -> gr.Blocks:
|
| 343 |
+
with gr.Blocks() as demo:
|
| 344 |
+
model_name = gr.Textbox(label='Model Name')
|
| 345 |
+
hf_token = gr.Textbox(
|
| 346 |
+
label='Hugging Face Token (with write permission)')
|
| 347 |
+
upload_button = gr.Button('Upload')
|
| 348 |
+
with gr.Box():
|
| 349 |
+
gr.Markdown('Message')
|
| 350 |
+
result = gr.Markdown()
|
| 351 |
+
gr.Markdown('''
|
| 352 |
+
- You can upload your trained model to your private Model repo (i.e. https://huggingface.co/{your_username}/{model_name}).
|
| 353 |
+
- You can find your Hugging Face token [here](https://huggingface.co/settings/tokens).
|
| 354 |
+
''')
|
| 355 |
+
|
| 356 |
+
upload_button.click(fn=upload,
|
| 357 |
+
inputs=[model_name, hf_token],
|
| 358 |
+
outputs=result)
|
| 359 |
+
|
| 360 |
+
return demo
|
| 361 |
+
|
| 362 |
+
|
| 363 |
pipe = InferencePipeline()
|
| 364 |
trainer = Trainer()
|
| 365 |
|
|
|
|
| 374 |
gr.Markdown(DETAILDESCRIPTION)
|
| 375 |
|
| 376 |
with gr.Tabs():
|
| 377 |
+
with gr.TabItem('Train'):
|
| 378 |
+
create_training_demo(trainer, pipe)
|
| 379 |
+
with gr.TabItem('Test'):
|
| 380 |
create_inference_demo(pipe)
|
| 381 |
+
with gr.TabItem('Upload'):
|
| 382 |
+
create_upload_demo()
|
| 383 |
|
| 384 |
demo.queue(default_enabled=False).launch(share=False)
|
| 385 |
|
app_001.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
"""Demo app for https://github.com/adobe-research/custom-diffusion.
|
| 3 |
+
The code in this repo is partly adapted from the following repository:
|
| 4 |
+
https://huggingface.co/spaces/hysts/LoRA-SD-training
|
| 5 |
+
MIT License
|
| 6 |
+
Copyright (c) 2022 hysts
|
| 7 |
+
==========================================================================================
|
| 8 |
+
Adobe’s modifications are Copyright 2022 Adobe Research. All rights reserved.
|
| 9 |
+
Adobe’s modifications are licensed under the Adobe Research License. To view a copy of the license, visit
|
| 10 |
+
LICENSE.
|
| 11 |
+
==========================================================================================
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
from __future__ import annotations
|
| 15 |
+
import sys
|
| 16 |
+
import os
|
| 17 |
+
import pathlib
|
| 18 |
+
|
| 19 |
+
import gradio as gr
|
| 20 |
+
import torch
|
| 21 |
+
|
| 22 |
+
from inference import InferencePipeline
|
| 23 |
+
from trainer import Trainer
|
| 24 |
+
from uploader import upload
|
| 25 |
+
|
| 26 |
+
TITLE = '# Custom Diffusion + StableDiffusion Training UI'
|
| 27 |
+
DESCRIPTION = '''This is a demo for [https://github.com/adobe-research/custom-diffusion](https://github.com/adobe-research/custom-diffusion).
|
| 28 |
+
It is recommended to upgrade to GPU in Settings after duplicating this space to use it.
|
| 29 |
+
<a href="https://huggingface.co/spaces/nupurkmr9/custom-diffusion?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
| 30 |
+
'''
|
| 31 |
+
DETAILDESCRIPTION='''
|
| 32 |
+
Custom Diffusion allows you to fine-tune text-to-image diffusion models, such as Stable Diffusion, given a few images of a new concept (~4-20).
|
| 33 |
+
We fine-tune only a subset of model parameters, namely key and value projection matrices, in the cross-attention layers and the modifier token used to represent the object.
|
| 34 |
+
This also reduces the extra storage for each additional concept to 75MB. Our method also allows you to use a combination of concepts. There's still limitations on which compositions work. For more analysis please refer to our [website](https://www.cs.cmu.edu/~custom-diffusion/).
|
| 35 |
+
<center>
|
| 36 |
+
<img src="https://huggingface.co/spaces/nupurkmr9/custom-diffusion/resolve/main/method.jpg" width="600" align="center" >
|
| 37 |
+
</center>
|
| 38 |
+
'''
|
| 39 |
+
|
| 40 |
+
ORIGINAL_SPACE_ID = 'nupurkmr9/custom-diffusion'
|
| 41 |
+
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
|
| 42 |
+
SHARED_UI_WARNING = f'''# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
|
| 43 |
+
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
|
| 44 |
+
'''
|
| 45 |
+
if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID:
|
| 46 |
+
SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
|
| 47 |
+
|
| 48 |
+
else:
|
| 49 |
+
SETTINGS = 'Settings'
|
| 50 |
+
CUDA_NOT_AVAILABLE_WARNING = f'''# Attention - Running on CPU.
|
| 51 |
+
<center>
|
| 52 |
+
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
|
| 53 |
+
"T4 small" is sufficient to run this demo.
|
| 54 |
+
</center>
|
| 55 |
+
'''
|
| 56 |
+
|
| 57 |
+
os.system("git clone https://github.com/ziqihuangg/ReVersion")
|
| 58 |
+
sys.path.append("ReVersion")
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def show_warning(warning_text: str) -> gr.Blocks:
|
| 62 |
+
with gr.Blocks() as demo:
|
| 63 |
+
with gr.Box():
|
| 64 |
+
gr.Markdown(warning_text)
|
| 65 |
+
return demo
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def update_output_files() -> dict:
|
| 69 |
+
paths = sorted(pathlib.Path('results').glob('*.bin'))
|
| 70 |
+
paths = [path.as_posix() for path in paths] # type: ignore
|
| 71 |
+
return gr.update(value=paths or None)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def find_weight_files() -> list[str]:
|
| 75 |
+
curr_dir = pathlib.Path(__file__).parent
|
| 76 |
+
paths = sorted(curr_dir.rglob('*.bin'))
|
| 77 |
+
paths = [path for path in paths if '.lfs' not in str(path)]
|
| 78 |
+
return [path.relative_to(curr_dir).as_posix() for path in paths]
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def reload_custom_diffusion_weight_list() -> dict:
|
| 82 |
+
return gr.update(choices=find_weight_files())
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
| 86 |
+
with gr.Blocks() as demo:
|
| 87 |
+
with gr.Row():
|
| 88 |
+
with gr.Column():
|
| 89 |
+
base_model = gr.Dropdown(
|
| 90 |
+
choices=['ReVersion/experiments/painted_on'],
|
| 91 |
+
value='ReVersion/experiments/painted_on',
|
| 92 |
+
label='Base Model',
|
| 93 |
+
visible=True)
|
| 94 |
+
resolution = gr.Dropdown(choices=[512, 768],
|
| 95 |
+
value=512,
|
| 96 |
+
label='Resolution',
|
| 97 |
+
visible=True)
|
| 98 |
+
reload_button = gr.Button('Reload Weight List')
|
| 99 |
+
weight_name = gr.Dropdown(choices=find_weight_files(),
|
| 100 |
+
value='ReVersion/experiments/painted_on',
|
| 101 |
+
label='ReVersion/experiments/painted_on')
|
| 102 |
+
prompt = gr.Textbox(
|
| 103 |
+
label='Prompt',
|
| 104 |
+
max_lines=1,
|
| 105 |
+
placeholder='Example: "cat <R> stone"')
|
| 106 |
+
seed = gr.Slider(label='Seed',
|
| 107 |
+
minimum=0,
|
| 108 |
+
maximum=100000,
|
| 109 |
+
step=1,
|
| 110 |
+
value=42)
|
| 111 |
+
with gr.Accordion('Other Parameters', open=False):
|
| 112 |
+
num_steps = gr.Slider(label='Number of Steps',
|
| 113 |
+
minimum=0,
|
| 114 |
+
maximum=500,
|
| 115 |
+
step=1,
|
| 116 |
+
value=100)
|
| 117 |
+
guidance_scale = gr.Slider(label='CFG Scale',
|
| 118 |
+
minimum=0,
|
| 119 |
+
maximum=50,
|
| 120 |
+
step=0.1,
|
| 121 |
+
value=6)
|
| 122 |
+
eta = gr.Slider(label='DDIM eta',
|
| 123 |
+
minimum=0,
|
| 124 |
+
maximum=1.,
|
| 125 |
+
step=0.1,
|
| 126 |
+
value=1.)
|
| 127 |
+
batch_size = gr.Slider(label='Batch Size',
|
| 128 |
+
minimum=0,
|
| 129 |
+
maximum=10.,
|
| 130 |
+
step=1,
|
| 131 |
+
value=1)
|
| 132 |
+
|
| 133 |
+
run_button = gr.Button('Generate')
|
| 134 |
+
|
| 135 |
+
gr.Markdown('''
|
| 136 |
+
- Models with names starting with "custom-diffusion-models/" are the pretrained models provided in the [original repo](https://github.com/adobe-research/custom-diffusion), and the ones with names starting with "results/delta.bin" are your trained models.
|
| 137 |
+
- After training, you can press "Reload Weight List" button to load your trained model names.
|
| 138 |
+
- Increase number of steps in Other parameters for better samples qualitatively.
|
| 139 |
+
''')
|
| 140 |
+
with gr.Column():
|
| 141 |
+
result = gr.Image(label='Result')
|
| 142 |
+
|
| 143 |
+
reload_button.click(fn=reload_custom_diffusion_weight_list,
|
| 144 |
+
inputs=None,
|
| 145 |
+
outputs=weight_name)
|
| 146 |
+
prompt.submit(fn=pipe.run,
|
| 147 |
+
inputs=[
|
| 148 |
+
base_model,
|
| 149 |
+
weight_name,
|
| 150 |
+
prompt,
|
| 151 |
+
seed,
|
| 152 |
+
num_steps,
|
| 153 |
+
guidance_scale,
|
| 154 |
+
eta,
|
| 155 |
+
batch_size,
|
| 156 |
+
resolution
|
| 157 |
+
],
|
| 158 |
+
outputs=result,
|
| 159 |
+
queue=False)
|
| 160 |
+
run_button.click(fn=pipe.run,
|
| 161 |
+
inputs=[
|
| 162 |
+
base_model,
|
| 163 |
+
weight_name,
|
| 164 |
+
prompt,
|
| 165 |
+
seed,
|
| 166 |
+
num_steps,
|
| 167 |
+
guidance_scale,
|
| 168 |
+
eta,
|
| 169 |
+
batch_size,
|
| 170 |
+
resolution
|
| 171 |
+
],
|
| 172 |
+
outputs=result,
|
| 173 |
+
queue=False)
|
| 174 |
+
return demo
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
pipe = InferencePipeline()
|
| 178 |
+
trainer = Trainer()
|
| 179 |
+
|
| 180 |
+
with gr.Blocks(css='style.css') as demo:
|
| 181 |
+
if os.getenv('IS_SHARED_UI'):
|
| 182 |
+
show_warning(SHARED_UI_WARNING)
|
| 183 |
+
if not torch.cuda.is_available():
|
| 184 |
+
show_warning(CUDA_NOT_AVAILABLE_WARNING)
|
| 185 |
+
|
| 186 |
+
gr.Markdown(TITLE)
|
| 187 |
+
gr.Markdown(DESCRIPTION)
|
| 188 |
+
gr.Markdown(DETAILDESCRIPTION)
|
| 189 |
+
|
| 190 |
+
with gr.Tabs():
|
| 191 |
+
# with gr.TabItem('Train'):
|
| 192 |
+
# create_training_demo(trainer, pipe)
|
| 193 |
+
with gr.TabItem('Inference'):
|
| 194 |
+
create_inference_demo(pipe)
|
| 195 |
+
# with gr.TabItem('Upload'):
|
| 196 |
+
# create_upload_demo()
|
| 197 |
+
|
| 198 |
+
demo.queue(default_enabled=False).launch(share=False)
|
| 199 |
+
|
inference.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import gc
|
| 4 |
+
import pathlib
|
| 5 |
+
import sys
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import PIL.Image
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
from diffusers import StableDiffusionPipeline
|
| 13 |
+
sys.path.insert(0, './ReVersion')
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class InferencePipeline:
|
| 17 |
+
def __init__(self):
|
| 18 |
+
self.pipe = None
|
| 19 |
+
self.device = torch.device(
|
| 20 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
| 21 |
+
self.weight_path = None
|
| 22 |
+
|
| 23 |
+
def clear(self) -> None:
|
| 24 |
+
self.weight_path = None
|
| 25 |
+
del self.pipe
|
| 26 |
+
self.pipe = None
|
| 27 |
+
torch.cuda.empty_cache()
|
| 28 |
+
gc.collect()
|
| 29 |
+
|
| 30 |
+
@staticmethod
|
| 31 |
+
def get_weight_path(name: str) -> pathlib.Path:
|
| 32 |
+
curr_dir = pathlib.Path(__file__).parent
|
| 33 |
+
return curr_dir / name
|
| 34 |
+
|
| 35 |
+
def load_pipe(self, model_id: str, filename: str) -> None:
|
| 36 |
+
weight_path = self.get_weight_path(filename)
|
| 37 |
+
if weight_path == self.weight_path:
|
| 38 |
+
return
|
| 39 |
+
self.weight_path = weight_path
|
| 40 |
+
weight = torch.load(self.weight_path, map_location=self.device)
|
| 41 |
+
|
| 42 |
+
if self.device.type == 'cpu':
|
| 43 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id)
|
| 44 |
+
else:
|
| 45 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 46 |
+
model_id, torch_dtype=torch.float16)
|
| 47 |
+
pipe = pipe.to(self.device)
|
| 48 |
+
|
| 49 |
+
from src import diffuser_training
|
| 50 |
+
diffuser_training.load_model(pipe.text_encoder, pipe.tokenizer, pipe.unet, weight_path, compress=False)
|
| 51 |
+
|
| 52 |
+
self.pipe = pipe
|
| 53 |
+
|
| 54 |
+
def run(
|
| 55 |
+
self,
|
| 56 |
+
base_model: str,
|
| 57 |
+
weight_name: str,
|
| 58 |
+
prompt: str,
|
| 59 |
+
seed: int,
|
| 60 |
+
n_steps: int,
|
| 61 |
+
guidance_scale: float,
|
| 62 |
+
eta: float,
|
| 63 |
+
batch_size: int,
|
| 64 |
+
resolution: int,
|
| 65 |
+
) -> PIL.Image.Image:
|
| 66 |
+
if not torch.cuda.is_available():
|
| 67 |
+
raise gr.Error('CUDA is not available.')
|
| 68 |
+
|
| 69 |
+
self.load_pipe(base_model, weight_name)
|
| 70 |
+
|
| 71 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
| 72 |
+
out = self.pipe([prompt]*batch_size,
|
| 73 |
+
num_inference_steps=n_steps,
|
| 74 |
+
guidance_scale=guidance_scale,
|
| 75 |
+
height=resolution, width=resolution,
|
| 76 |
+
eta = eta,
|
| 77 |
+
generator=generator) # type: ignore
|
| 78 |
+
torch.cuda.empty_cache()
|
| 79 |
+
out = out.images
|
| 80 |
+
out = PIL.Image.fromarray(np.hstack([np.array(x) for x in out]))
|
| 81 |
+
return out
|