Spaces:
Runtime error
Runtime error
update
Browse files- app.py +2 -4
- inference.py +1 -1
app.py
CHANGED
|
@@ -101,7 +101,7 @@ def reload_custom_diffusion_weight_list() -> dict:
|
|
| 101 |
return gr.update(choices=find_weight_files())
|
| 102 |
|
| 103 |
|
| 104 |
-
def create_inference_demo(func: inference_fn
|
| 105 |
with gr.Blocks() as demo:
|
| 106 |
with gr.Row():
|
| 107 |
with gr.Column():
|
|
@@ -151,7 +151,6 @@ def create_inference_demo(func: inference_fn, device) -> gr.Blocks:
|
|
| 151 |
prompt,
|
| 152 |
num_samples,
|
| 153 |
guidance_scale,
|
| 154 |
-
device
|
| 155 |
],
|
| 156 |
outputs=result,
|
| 157 |
queue=False)
|
|
@@ -161,7 +160,6 @@ def create_inference_demo(func: inference_fn, device) -> gr.Blocks:
|
|
| 161 |
prompt,
|
| 162 |
num_samples,
|
| 163 |
guidance_scale,
|
| 164 |
-
device
|
| 165 |
],
|
| 166 |
outputs=result,
|
| 167 |
queue=False)
|
|
@@ -184,7 +182,7 @@ with gr.Blocks(css='style.css') as demo:
|
|
| 184 |
|
| 185 |
with gr.Tabs():
|
| 186 |
with gr.TabItem('Test'):
|
| 187 |
-
create_inference_demo(inference_fn
|
| 188 |
|
| 189 |
demo.launch(
|
| 190 |
enable_queue=args.enable_queue,
|
|
|
|
| 101 |
return gr.update(choices=find_weight_files())
|
| 102 |
|
| 103 |
|
| 104 |
+
def create_inference_demo(func: inference_fn) -> gr.Blocks:
|
| 105 |
with gr.Blocks() as demo:
|
| 106 |
with gr.Row():
|
| 107 |
with gr.Column():
|
|
|
|
| 151 |
prompt,
|
| 152 |
num_samples,
|
| 153 |
guidance_scale,
|
|
|
|
| 154 |
],
|
| 155 |
outputs=result,
|
| 156 |
queue=False)
|
|
|
|
| 160 |
prompt,
|
| 161 |
num_samples,
|
| 162 |
guidance_scale,
|
|
|
|
| 163 |
],
|
| 164 |
outputs=result,
|
| 165 |
queue=False)
|
|
|
|
| 182 |
|
| 183 |
with gr.Tabs():
|
| 184 |
with gr.TabItem('Test'):
|
| 185 |
+
create_inference_demo(inference_fn)
|
| 186 |
|
| 187 |
demo.launch(
|
| 188 |
enable_queue=args.enable_queue,
|
inference.py
CHANGED
|
@@ -46,10 +46,10 @@ def inference_fn(
|
|
| 46 |
prompt,
|
| 47 |
num_samples,
|
| 48 |
guidance_scale,
|
| 49 |
-
device
|
| 50 |
):
|
| 51 |
|
| 52 |
# create inference pipeline
|
|
|
|
| 53 |
pipe = StableDiffusionPipeline.from_pretrained(model_id,torch_dtype=torch.float16).to(device)
|
| 54 |
|
| 55 |
# make directory to save images
|
|
|
|
| 46 |
prompt,
|
| 47 |
num_samples,
|
| 48 |
guidance_scale,
|
|
|
|
| 49 |
):
|
| 50 |
|
| 51 |
# create inference pipeline
|
| 52 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 53 |
pipe = StableDiffusionPipeline.from_pretrained(model_id,torch_dtype=torch.float16).to(device)
|
| 54 |
|
| 55 |
# make directory to save images
|