Spaces:
Sleeping
Sleeping
| import logging | |
| from typing import Any, List, Dict | |
| from langchain.memory.chat_memory import BaseChatMemory | |
| from langchain.schema import get_buffer_string, BaseMessage, HumanMessage, AIMessage | |
| from langchain.schema.language_model import BaseLanguageModel | |
| from server.db.repository.message_repository import filter_message | |
| from server.db.models.message_model import MessageModel | |
| class ConversationBufferDBMemory(BaseChatMemory): | |
| conversation_id: str | |
| human_prefix: str = "Human" | |
| ai_prefix: str = "Assistant" | |
| llm: BaseLanguageModel | |
| memory_key: str = "history" | |
| max_token_limit: int = 2000 | |
| message_limit: int = 10 | |
| def buffer(self) -> List[BaseMessage]: | |
| """String buffer of memory.""" | |
| # fetch limited messages desc, and return reversed | |
| messages = filter_message(conversation_id=self.conversation_id, limit=self.message_limit) | |
| # 返回的记录按时间倒序,转为正序 | |
| messages = list(reversed(messages)) | |
| chat_messages: List[BaseMessage] = [] | |
| for message in messages: | |
| chat_messages.append(HumanMessage(content=message["query"])) | |
| chat_messages.append(AIMessage(content=message["response"])) | |
| if not chat_messages: | |
| return [] | |
| # prune the chat message if it exceeds the max token limit | |
| curr_buffer_length = self.llm.get_num_tokens(get_buffer_string(chat_messages)) | |
| if curr_buffer_length > self.max_token_limit: | |
| pruned_memory = [] | |
| while curr_buffer_length > self.max_token_limit and chat_messages: | |
| pruned_memory.append(chat_messages.pop(0)) | |
| curr_buffer_length = self.llm.get_num_tokens(get_buffer_string(chat_messages)) | |
| return chat_messages | |
| def memory_variables(self) -> List[str]: | |
| """Will always return list of memory variables. | |
| :meta private: | |
| """ | |
| return [self.memory_key] | |
| def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |
| """Return history buffer.""" | |
| buffer: Any = self.buffer | |
| if self.return_messages: | |
| final_buffer: Any = buffer | |
| else: | |
| final_buffer = get_buffer_string( | |
| buffer, | |
| human_prefix=self.human_prefix, | |
| ai_prefix=self.ai_prefix, | |
| ) | |
| return {self.memory_key: final_buffer} | |
| def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: | |
| """Nothing should be saved or changed""" | |
| pass | |
| def clear(self) -> None: | |
| """Nothing to clear, got a memory like a vault.""" | |
| pass |