Spaces:
Sleeping
Sleeping
| from fastchat.conversation import Conversation | |
| from server.model_workers.base import * | |
| from fastchat import conversation as conv | |
| import sys | |
| from typing import List, Dict, Iterator, Literal | |
| from configs import logger, log_verbose | |
| import requests | |
| import jwt | |
| import time | |
| import json | |
| def generate_token(apikey: str, exp_seconds: int): | |
| try: | |
| id, secret = apikey.split(".") | |
| except Exception as e: | |
| raise Exception("invalid apikey", e) | |
| payload = { | |
| "api_key": id, | |
| "exp": int(round(time.time() * 1000)) + exp_seconds * 1000, | |
| "timestamp": int(round(time.time() * 1000)), | |
| } | |
| return jwt.encode( | |
| payload, | |
| secret, | |
| algorithm="HS256", | |
| headers={"alg": "HS256", "sign_type": "SIGN"}, | |
| ) | |
| class ChatGLMWorker(ApiModelWorker): | |
| def __init__( | |
| self, | |
| *, | |
| model_names: List[str] = ["zhipu-api"], | |
| controller_addr: str = None, | |
| worker_addr: str = None, | |
| version: Literal["chatglm_turbo"] = "chatglm_turbo", | |
| **kwargs, | |
| ): | |
| kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr) | |
| kwargs.setdefault("context_len", 4096) | |
| super().__init__(**kwargs) | |
| self.version = version | |
| def do_chat(self, params: ApiChatParams) -> Iterator[Dict]: | |
| params.load_config(self.model_names[0]) | |
| token = generate_token(params.api_key, 60) | |
| headers = { | |
| "Content-Type": "application/json", | |
| "Authorization": f"Bearer {token}" | |
| } | |
| data = { | |
| "model": params.version, | |
| "messages": params.messages, | |
| "max_tokens": params.max_tokens, | |
| "temperature": params.temperature, | |
| "stream": False | |
| } | |
| url = "https://open.bigmodel.cn/api/paas/v4/chat/completions" | |
| response = requests.post(url, headers=headers, json=data) | |
| # for chunk in response.iter_lines(): | |
| # if chunk: | |
| # chunk_str = chunk.decode('utf-8') | |
| # json_start_pos = chunk_str.find('{"id"') | |
| # if json_start_pos != -1: | |
| # json_str = chunk_str[json_start_pos:] | |
| # json_data = json.loads(json_str) | |
| # for choice in json_data.get('choices', []): | |
| # delta = choice.get('delta', {}) | |
| # content = delta.get('content', '') | |
| # yield {"error_code": 0, "text": content} | |
| ans = response.json() | |
| content = ans["choices"][0]["message"]["content"] | |
| yield {"error_code": 0, "text": content} | |
| def get_embeddings(self, params): | |
| # 临时解决方案,不支持embedding | |
| print("embedding") | |
| print(params) | |
| def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation: | |
| return conv.Conversation( | |
| name=self.model_names[0], | |
| system_message="你是智谱AI小助手,请根据用户的提示来完成任务", | |
| messages=[], | |
| roles=["user", "assistant", "system"], | |
| sep="\n###", | |
| stop_str="###", | |
| ) | |
| if __name__ == "__main__": | |
| import uvicorn | |
| from server.utils import MakeFastAPIOffline | |
| from fastchat.serve.model_worker import app | |
| worker = ChatGLMWorker( | |
| controller_addr="http://127.0.0.1:20001", | |
| worker_addr="http://127.0.0.1:21001", | |
| ) | |
| sys.modules["fastchat.serve.model_worker"].worker = worker | |
| MakeFastAPIOffline(app) | |
| uvicorn.run(app, port=21001) | |