File size: 7,947 Bytes
cd5b6a8
 
cdd24a3
cd5b6a8
 
b38b083
 
cdd24a3
cd5b6a8
 
 
 
 
719919b
 
cdd24a3
cd5b6a8
719919b
cd5b6a8
 
719919b
cd5b6a8
5304fdb
cd5b6a8
719919b
 
cdd24a3
 
755bec7
 
cdd24a3
719919b
 
cdd24a3
 
5304fdb
cdd24a3
53a003d
755bec7
f03c070
b571adb
719919b
cd5b6a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719919b
cd5b6a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdd24a3
 
 
755bec7
cdd24a3
cd5b6a8
 
 
 
 
 
 
 
 
 
 
719919b
cd5b6a8
 
 
cdd24a3
cd5b6a8
755bec7
cd5b6a8
 
 
 
cdd24a3
 
755bec7
cdd24a3
cd5b6a8
755bec7
 
 
 
 
 
cd5b6a8
 
 
 
 
 
 
 
 
5304fdb
cd5b6a8
 
 
 
 
 
 
 
 
 
 
 
 
b571adb
cd5b6a8
 
 
 
719919b
cd5b6a8
cdd24a3
cd5b6a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755bec7
cd5b6a8
755bec7
cdd24a3
755bec7
 
 
 
cdd24a3
755bec7
cd5b6a8
cdd24a3
755bec7
cd5b6a8
755bec7
 
cd5b6a8
 
755bec7
cd5b6a8
755bec7
cd5b6a8
755bec7
cd5b6a8
 
 
 
 
 
 
 
 
 
 
 
 
 
b571adb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import pickle
from typing import Dict, Any, List
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor

from config import Config
from langchain_core.documents import Document
from langchain_community.document_loaders import TextLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.retrievers import BM25Retriever
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEndpoint

class KnowledgeManager:
    def __init__(self):
        Config.setup_dirs()
        self.embeddings = self._init_embeddings()
        self.vector_db, self.bm25_retriever = self._init_retrievers()
        self.qa_chain = self._create_qa_chain()

    def _init_embeddings(self):
        print("[i] Using Hugging Face embeddings")
        return HuggingFaceEmbeddings(
            model_name="sentence-transformers/all-mpnet-base-v2",
            model_kwargs={'device': 'cpu'},
            encode_kwargs={'normalize_embeddings': True}
        )

    def _init_llm(self):
        print("[i] Using HuggingFaceEndpoint with Mistral-7B")
        return HuggingFaceEndpoint(
            repo_id="mistralai/Mistral-7B-Instruct-v0.1",
            temperature=0.1,
            max_new_tokens=512,
            huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN"),
            
        )

    def _init_retrievers(self):
        faiss_index_path = Config.VECTOR_STORE_PATH / "index.faiss"
        faiss_pkl_path = Config.VECTOR_STORE_PATH / "index.pkl"

        if faiss_index_path.exists() and faiss_pkl_path.exists():
            try:
                vector_db = FAISS.load_local(
                    str(Config.VECTOR_STORE_PATH),
                    self.embeddings,
                    allow_dangerous_deserialization=True
                )
                if Config.BM25_STORE_PATH.exists():
                    with open(Config.BM25_STORE_PATH, "rb") as f:
                        bm25_retriever = pickle.load(f)
                    return vector_db, bm25_retriever
            except Exception as e:
                print(f"[!] Error loading vector store: {e}. Rebuilding...")

        return self._build_retrievers_from_documents()

    def _build_retrievers_from_documents(self):
        if not any(Config.KNOWLEDGE_DIR.glob("**/*.txt")):
            print("[i] No knowledge files found. Creating default base...")
            self._create_default_knowledge()

        loader = DirectoryLoader(
            str(Config.KNOWLEDGE_DIR),
            glob="**/*.txt",
            loader_cls=TextLoader,
            loader_kwargs={'encoding': 'utf-8'}
        )
        docs = loader.load()
        splitter = RecursiveCharacterTextSplitter(
            chunk_size=Config.CHUNK_SIZE,
            chunk_overlap=Config.CHUNK_OVERLAP,
            separators=["\n\n", "\n", ". ", "! ", "? ", "; ", " ", ""]
        )
        chunks = splitter.split_documents(docs)

        vector_db = FAISS.from_documents(
            chunks, 
            self.embeddings,
            distance_strategy="COSINE"
        )
        vector_db.save_local(str(Config.VECTOR_STORE_PATH))

        bm25_retriever = BM25Retriever.from_documents(chunks)
        bm25_retriever.k = Config.MAX_CONTEXT_CHUNKS

        with open(Config.BM25_STORE_PATH, "wb") as f:
            pickle.dump(bm25_retriever, f)

        return vector_db, bm25_retriever

    def _create_default_knowledge(self):
        default_text = """Sirraya xBrain - Advanced AI Platform\n\nCreated by Amir Hameed.\n\nFeatures:\n- Hybrid Retrieval (Vector + BM25)\n- LISA Assistant\n- FAISS, BM25 Integration"""
        with open(Config.KNOWLEDGE_DIR / "sirraya_xbrain.txt", "w", encoding="utf-8") as f:
            f.write(default_text)

    def _parallel_retrieve(self, question: str) -> List[Document]:
        def retrieve_with_bm25():
            return self.bm25_retriever.invoke(question)

        def retrieve_with_vector():
            retriever = self.vector_db.as_retriever(
                search_type="similarity_score_threshold",
                search_kwargs={
                    "k": Config.MAX_CONTEXT_CHUNKS,
                    "score_threshold": 0.5  # Lowered threshold for testing
                }
            )
            docs = retriever.invoke(question)
            # Ensure scores are within 0-1 range
            for doc in docs:
                if hasattr(doc, 'metadata') and 'score' in doc.metadata:
                    doc.metadata['score'] = max(0, min(1, doc.metadata['score']))
            return docs

        with ThreadPoolExecutor(max_workers=2) as executor:
            bm25_future = executor.submit(retrieve_with_bm25)
            vector_future = executor.submit(retrieve_with_vector)
            bm25_results = bm25_future.result()
            vector_results = vector_future.result()

        return vector_results + bm25_results

    def _create_qa_chain(self):
        if not self.vector_db or not self.bm25_retriever:
            return None

        prompt_template = """You are LISA, an AI assistant for Sirraya xBrain. Answer using the context below:

Context:
{context}

Question: {question}

Instructions:
- Use only the context.
- Be accurate and helpful.
- If unsure, say: "I don't have that information in my knowledge base."

Answer:"""

        return RetrievalQA.from_chain_type(
            llm=self._init_llm(),
            chain_type="stuff",
            retriever=self.vector_db.as_retriever(search_kwargs={"k": Config.MAX_CONTEXT_CHUNKS}),
            chain_type_kwargs={
                "prompt": PromptTemplate(
                    template=prompt_template,
                    input_variables=["context", "question"]
                )
            },
            return_source_documents=True
        )

    def query(self, question: str) -> Dict[str, Any]:
        if not self.qa_chain:
            return {
                "answer": "Knowledge system not initialized. Please reload.",
                "processing_time": 0,
                "source_chunks": []
            }

        try:
            start_time = datetime.now()
            docs = self._parallel_retrieve(question)
            
            if not docs:
                print("[i] No docs found with normal threshold, trying lower threshold...")
                retriever = self.vector_db.as_retriever(
                    search_kwargs={
                        "k": Config.MAX_CONTEXT_CHUNKS,
                        "score_threshold": 0.3  # Very low threshold for fallback
                    }
                )
                docs = retriever.invoke(question)

            result = self.qa_chain.invoke({"query": question, "input_documents": docs})
            
            return {
                "answer": result.get("result", "No answer could be generated"),
                "processing_time": (datetime.now() - start_time).total_seconds() * 1000,
                "source_chunks": result.get("source_documents", [])
            }
            
        except Exception as e:
            print(f"[!] Query error: {str(e)}")
            return {
                "answer": "I encountered an error processing your query. Please try again.",
                "processing_time": 0,
                "source_chunks": []
            }

    def get_knowledge_files_count(self) -> int:
        return len(list(Config.KNOWLEDGE_DIR.glob("**/*.txt"))) if Config.KNOWLEDGE_DIR.exists() else 0

    def save_uploaded_file(self, uploaded_file, filename: str) -> bool:
        try:
            with open(Config.KNOWLEDGE_DIR / filename, "wb") as f:
                f.write(uploaded_file.getbuffer())
            return True
        except Exception as e:
            print(f"[!] File save error: {e}")
            return False