Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,74 +1,41 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
import os
|
| 3 |
-
import
|
| 4 |
-
from
|
| 5 |
-
from knowledge_engine import KnowledgeManager # Your class
|
| 6 |
-
|
| 7 |
-
# Determine if running on HF Spaces or locally
|
| 8 |
-
IS_HF_SPACES = os.getenv("SPACE_ID") is not None
|
| 9 |
-
|
| 10 |
-
# Set knowledge base directory depending on environment
|
| 11 |
-
if IS_HF_SPACES:
|
| 12 |
-
KNOWLEDGE_DIR = Path(tempfile.gettempdir()) / "knowledge_base"
|
| 13 |
-
else:
|
| 14 |
-
KNOWLEDGE_DIR = Path("knowledge_base")
|
| 15 |
-
|
| 16 |
-
KNOWLEDGE_DIR.mkdir(parents=True, exist_ok=True)
|
| 17 |
|
| 18 |
st.set_page_config(
|
| 19 |
-
page_title="
|
| 20 |
-
page_icon="π§ ",
|
| 21 |
layout="centered",
|
| 22 |
-
|
|
|
|
| 23 |
)
|
| 24 |
|
| 25 |
-
|
| 26 |
-
"""Check if HuggingFace API token is set in environment variables."""
|
| 27 |
-
return os.getenv("HUGGINGFACEHUB_API_TOKEN") or os.getenv("HF_TOKEN")
|
| 28 |
|
| 29 |
-
|
| 30 |
-
"
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
st.
|
| 35 |
-
|
| 36 |
-
st.
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
if not hasattr(km, "embeddings") or not km.embeddings:
|
| 42 |
-
st.error("β Embeddings failed to initialize.")
|
| 43 |
-
st.stop()
|
| 44 |
-
st.session_state.knowledge_manager = km
|
| 45 |
-
st.success("β
Knowledge Manager initialized successfully!")
|
| 46 |
-
except Exception as e:
|
| 47 |
-
st.error(f"β Error initializing Knowledge Manager:\n{e}")
|
| 48 |
-
st.stop()
|
| 49 |
|
| 50 |
-
|
| 51 |
-
initialize_knowledge_manager()
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
st.info("π€ Model & knowledge loaded and ready.")
|
| 58 |
-
|
| 59 |
-
# Show knowledge summary if available
|
| 60 |
-
if hasattr(km, "get_knowledge_summary"):
|
| 61 |
-
summary = km.get_knowledge_summary()
|
| 62 |
-
st.markdown(f"**Knowledge Summary:** {summary}")
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
answer = km.ask(question) # Replace with your actual query method
|
| 70 |
-
st.markdown(f"**Answer:** {answer}")
|
| 71 |
-
except Exception as e:
|
| 72 |
-
st.error(f"β Failed to get answer: {e}")
|
| 73 |
-
else:
|
| 74 |
-
st.warning("Knowledge Manager is not initialized yet.")
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from knowledge_manager import KnowledgeManager
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
st.set_page_config(
|
| 6 |
+
page_title="Sirraya xBrain - LangChain QA Assistant",
|
|
|
|
| 7 |
layout="centered",
|
| 8 |
+
page_icon="π§ ",
|
| 9 |
+
initial_sidebar_state="expanded",
|
| 10 |
)
|
| 11 |
|
| 12 |
+
st.title("π§ Sirraya xBrain β Intelligent QA Assistant")
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
if "km" not in st.session_state:
|
| 15 |
+
with st.spinner("Initializing knowledge base and LLM..."):
|
| 16 |
+
try:
|
| 17 |
+
st.session_state.km = KnowledgeManager()
|
| 18 |
+
st.success("β
Knowledge engine initialized successfully!")
|
| 19 |
+
st.info(st.session_state.km.get_knowledge_summary())
|
| 20 |
+
except Exception as e:
|
| 21 |
+
st.error(f"β Failed to initialize system: {e}")
|
| 22 |
+
st.session_state.km = None
|
| 23 |
|
| 24 |
+
if st.session_state.km is None:
|
| 25 |
+
st.warning("Knowledge base not loaded or failed to initialize.")
|
| 26 |
+
st.stop()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
question = st.text_input("Ask a question about the knowledge base:", "")
|
|
|
|
| 29 |
|
| 30 |
+
if question:
|
| 31 |
+
with st.spinner("Generating answer..."):
|
| 32 |
+
answer, sources = st.session_state.km.query(question)
|
| 33 |
|
| 34 |
+
st.markdown("### Answer:")
|
| 35 |
+
st.write(answer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
if sources:
|
| 38 |
+
with st.expander("π Source documents"):
|
| 39 |
+
for i, src in enumerate(sources, 1):
|
| 40 |
+
st.write(f"Source {i}:")
|
| 41 |
+
st.write(src)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|