Spaces:
Sleeping
Sleeping
Update knowledge_engine.py
Browse files- knowledge_engine.py +13 -26
knowledge_engine.py
CHANGED
|
@@ -1,20 +1,10 @@
|
|
| 1 |
import os
|
| 2 |
import pickle
|
| 3 |
-
from typing import
|
| 4 |
from datetime import datetime
|
| 5 |
from concurrent.futures import ThreadPoolExecutor
|
| 6 |
|
| 7 |
from config import Config
|
| 8 |
-
|
| 9 |
-
# Get token from environment variable
|
| 10 |
-
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 11 |
-
|
| 12 |
-
if not hf_token:
|
| 13 |
-
raise ValueError("HUGGINGFACEHUB_API_TOKEN not found in environment variables. Please set it in your Space secrets.")
|
| 14 |
-
|
| 15 |
-
os.environ["HUGGINGFACEHUB_API_TOKEN"] = hf_token
|
| 16 |
-
|
| 17 |
-
# Core ML/AI libraries
|
| 18 |
from langchain_community.document_loaders import TextLoader, DirectoryLoader
|
| 19 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 20 |
from langchain_community.vectorstores import FAISS
|
|
@@ -22,33 +12,30 @@ from langchain.chains import RetrievalQA
|
|
| 22 |
from langchain.prompts import PromptTemplate
|
| 23 |
from langchain.retrievers import BM25Retriever
|
| 24 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 25 |
-
from
|
| 26 |
-
from langchain_community.llms import HuggingFacePipeline
|
| 27 |
|
| 28 |
class KnowledgeManager:
|
| 29 |
def __init__(self):
|
| 30 |
Config.setup_dirs()
|
| 31 |
self.embeddings = self._init_embeddings()
|
| 32 |
self.vector_db, self.bm25_retriever = self._init_retrievers()
|
| 33 |
-
self.qa_chain = self.
|
| 34 |
|
| 35 |
def _init_embeddings(self):
|
| 36 |
print("[i] Using Hugging Face embeddings")
|
| 37 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 38 |
|
| 39 |
def _init_llm(self):
|
| 40 |
-
print("[i] Using
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
device_map="auto"
|
| 50 |
)
|
| 51 |
-
return HuggingFacePipeline(pipeline=pipe)
|
| 52 |
|
| 53 |
def _init_retrievers(self):
|
| 54 |
faiss_index_path = Config.VECTOR_STORE_PATH / "index.faiss"
|
|
@@ -124,7 +111,7 @@ class KnowledgeManager:
|
|
| 124 |
|
| 125 |
return vector_results + bm25_results
|
| 126 |
|
| 127 |
-
def
|
| 128 |
if not self.vector_db or not self.bm25_retriever:
|
| 129 |
return None
|
| 130 |
|
|
|
|
| 1 |
import os
|
| 2 |
import pickle
|
| 3 |
+
from typing import Dict, Any
|
| 4 |
from datetime import datetime
|
| 5 |
from concurrent.futures import ThreadPoolExecutor
|
| 6 |
|
| 7 |
from config import Config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from langchain_community.document_loaders import TextLoader, DirectoryLoader
|
| 9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 10 |
from langchain_community.vectorstores import FAISS
|
|
|
|
| 12 |
from langchain.prompts import PromptTemplate
|
| 13 |
from langchain.retrievers import BM25Retriever
|
| 14 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 15 |
+
from langchain_community.llms import HuggingFaceHub
|
|
|
|
| 16 |
|
| 17 |
class KnowledgeManager:
|
| 18 |
def __init__(self):
|
| 19 |
Config.setup_dirs()
|
| 20 |
self.embeddings = self._init_embeddings()
|
| 21 |
self.vector_db, self.bm25_retriever = self._init_retrievers()
|
| 22 |
+
self.qa_chain = self._create_qa_chain()
|
| 23 |
|
| 24 |
def _init_embeddings(self):
|
| 25 |
print("[i] Using Hugging Face embeddings")
|
| 26 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 27 |
|
| 28 |
def _init_llm(self):
|
| 29 |
+
print("[i] Using HuggingFaceHub with Mistral-7B")
|
| 30 |
+
return HuggingFaceHub(
|
| 31 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
| 32 |
+
huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN"),
|
| 33 |
+
model_kwargs={
|
| 34 |
+
"temperature": 0.1,
|
| 35 |
+
"max_new_tokens": 512,
|
| 36 |
+
"do_sample": True
|
| 37 |
+
}
|
|
|
|
| 38 |
)
|
|
|
|
| 39 |
|
| 40 |
def _init_retrievers(self):
|
| 41 |
faiss_index_path = Config.VECTOR_STORE_PATH / "index.faiss"
|
|
|
|
| 111 |
|
| 112 |
return vector_results + bm25_results
|
| 113 |
|
| 114 |
+
def _create_qa_chain(self):
|
| 115 |
if not self.vector_db or not self.bm25_retriever:
|
| 116 |
return None
|
| 117 |
|