Spaces:
Sleeping
Sleeping
Update knowledge_engine.py
Browse files- knowledge_engine.py +41 -92
knowledge_engine.py
CHANGED
|
@@ -1,112 +1,61 @@
|
|
| 1 |
import os
|
| 2 |
from pathlib import Path
|
| 3 |
-
from typing import List, Optional
|
| 4 |
-
|
| 5 |
-
import faiss
|
| 6 |
-
import numpy as np
|
| 7 |
-
from sentence_transformers import SentenceTransformer
|
| 8 |
-
|
| 9 |
-
from langchain.llms import HuggingFacePipeline
|
| 10 |
-
from langchain.chains import RetrievalQA
|
| 11 |
-
from langchain.vectorstores.faiss import FAISS
|
| 12 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
| 13 |
from langchain.document_loaders import TextLoader
|
| 14 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 15 |
-
|
| 16 |
-
import
|
| 17 |
-
from
|
|
|
|
| 18 |
|
| 19 |
class KnowledgeManager:
|
| 20 |
-
def __init__(self, knowledge_dir="
|
| 21 |
self.knowledge_dir = Path(knowledge_dir)
|
| 22 |
-
self.knowledge_dir.mkdir(exist_ok=True, parents=True)
|
| 23 |
-
|
| 24 |
self.documents = []
|
| 25 |
-
self.
|
| 26 |
self.vectorstore = None
|
| 27 |
self.retriever = None
|
| 28 |
-
self.qa_chain = None
|
| 29 |
self.llm = None
|
|
|
|
| 30 |
|
| 31 |
-
self.
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
self.
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
def load_documents(self):
|
| 43 |
-
# Load text files and split into chunks
|
| 44 |
files = list(self.knowledge_dir.glob("*.txt"))
|
| 45 |
-
|
|
|
|
|
|
|
| 46 |
for file in files:
|
| 47 |
-
loader = TextLoader(str(file)
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 53 |
-
self.texts = text_splitter.split_documents(self.documents)
|
| 54 |
|
| 55 |
-
def
|
| 56 |
-
|
| 57 |
-
self.vectorstore = None
|
| 58 |
-
return
|
| 59 |
-
self.vectorstore = FAISS.from_documents(self.texts, self.embeddings)
|
| 60 |
-
self.retriever = self.vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
| 61 |
-
|
| 62 |
-
def init_llm(self):
|
| 63 |
-
# Initialize HuggingFace pipeline + LangChain wrapper LLM
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
"text2text-generation",
|
| 69 |
-
model="google/flan-t5-small",
|
| 70 |
-
device=-1, # CPU only
|
| 71 |
-
max_length=256,
|
| 72 |
-
do_sample=False,
|
| 73 |
-
)
|
| 74 |
-
self.llm = HuggingFacePipeline(pipeline=pipe)
|
| 75 |
-
except Exception as e:
|
| 76 |
-
print(f"Failed to load flan-t5-small: {e}")
|
| 77 |
-
self.llm = None
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
print("No LLM available, will fallback to retrieval-only.")
|
| 82 |
|
| 83 |
-
def
|
| 84 |
-
|
| 85 |
-
self.qa_chain = RetrievalQA.from_chain_type(
|
| 86 |
-
llm=self.llm,
|
| 87 |
-
retriever=self.retriever,
|
| 88 |
-
return_source_documents=True,
|
| 89 |
-
chain_type="stuff", # Stuff all docs in prompt, or "map_reduce"
|
| 90 |
-
)
|
| 91 |
-
else:
|
| 92 |
-
self.qa_chain = None
|
| 93 |
|
| 94 |
-
def
|
| 95 |
-
|
| 96 |
-
|
|
|
|
| 97 |
|
| 98 |
-
def
|
| 99 |
-
|
| 100 |
-
# Use LLM + retrieval
|
| 101 |
-
result = self.qa_chain({"query": question})
|
| 102 |
-
answer = result.get("result", "No answer found.")
|
| 103 |
-
sources = result.get("source_documents", [])
|
| 104 |
-
source_texts = [doc.page_content for doc in sources]
|
| 105 |
-
return answer, source_texts
|
| 106 |
-
elif self.retriever:
|
| 107 |
-
# Retrieval only fallback
|
| 108 |
-
docs = self.retriever.get_relevant_documents(question)
|
| 109 |
-
answers = [doc.page_content for doc in docs]
|
| 110 |
-
return "\n\n".join(answers), []
|
| 111 |
-
else:
|
| 112 |
-
return "Knowledge base not initialized.", []
|
|
|
|
| 1 |
import os
|
| 2 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from langchain.document_loaders import TextLoader
|
| 4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
+
from langchain.vectorstores import FAISS
|
| 6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 7 |
+
from langchain.chains import RetrievalQA
|
| 8 |
+
from langchain.llms import HuggingFaceHub
|
| 9 |
|
| 10 |
class KnowledgeManager:
|
| 11 |
+
def __init__(self, knowledge_dir="."): # root dir by default
|
| 12 |
self.knowledge_dir = Path(knowledge_dir)
|
|
|
|
|
|
|
| 13 |
self.documents = []
|
| 14 |
+
self.embeddings = None
|
| 15 |
self.vectorstore = None
|
| 16 |
self.retriever = None
|
|
|
|
| 17 |
self.llm = None
|
| 18 |
+
self.qa_chain = None
|
| 19 |
|
| 20 |
+
self._load_documents()
|
| 21 |
+
if self.documents:
|
| 22 |
+
self._initialize_embeddings()
|
| 23 |
+
self._initialize_vectorstore()
|
| 24 |
+
self._initialize_llm()
|
| 25 |
+
self._initialize_qa_chain()
|
| 26 |
+
|
| 27 |
+
def _load_documents(self):
|
| 28 |
+
if not self.knowledge_dir.exists():
|
| 29 |
+
raise FileNotFoundError(f"Directory {self.knowledge_dir} does not exist.")
|
| 30 |
+
|
|
|
|
|
|
|
| 31 |
files = list(self.knowledge_dir.glob("*.txt"))
|
| 32 |
+
if not files:
|
| 33 |
+
raise FileNotFoundError(f"No .txt files found in {self.knowledge_dir}. Please upload your knowledge base files in root.")
|
| 34 |
+
|
| 35 |
for file in files:
|
| 36 |
+
loader = TextLoader(str(file))
|
| 37 |
+
self.documents.extend(loader.load())
|
| 38 |
+
|
| 39 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 40 |
+
self.documents = splitter.split_documents(self.documents)
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
def _initialize_embeddings(self):
|
| 43 |
+
self.embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
def _initialize_vectorstore(self):
|
| 46 |
+
self.vectorstore = FAISS.from_documents(self.documents, self.embeddings)
|
| 47 |
+
self.retriever = self.vectorstore.as_retriever()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
def _initialize_llm(self):
|
| 50 |
+
self.llm = HuggingFaceHub(repo_id="google/flan-t5-small", model_kwargs={"temperature":0, "max_length":256})
|
|
|
|
| 51 |
|
| 52 |
+
def _initialize_qa_chain(self):
|
| 53 |
+
self.qa_chain = RetrievalQA.from_chain_type(llm=self.llm, chain_type="stuff", retriever=self.retriever)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
def ask(self, query):
|
| 56 |
+
if not self.qa_chain:
|
| 57 |
+
return "Knowledge base not initialized properly."
|
| 58 |
+
return self.qa_chain.run(query)
|
| 59 |
|
| 60 |
+
def get_knowledge_summary(self):
|
| 61 |
+
return f"Loaded {len(self.documents)} document chunks from {self.knowledge_dir}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|