Spaces:
Sleeping
Sleeping
Update knowledge_engine.py
Browse files- knowledge_engine.py +23 -18
knowledge_engine.py
CHANGED
|
@@ -14,6 +14,9 @@ from langchain_community.llms import HuggingFacePipeline
|
|
| 14 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 15 |
|
| 16 |
|
|
|
|
|
|
|
|
|
|
| 17 |
class CPULLMProvider:
|
| 18 |
"""CPU-based LLM provider using HuggingFace models"""
|
| 19 |
|
|
@@ -23,10 +26,10 @@ class CPULLMProvider:
|
|
| 23 |
self.is_available = False
|
| 24 |
self.current_model = None
|
| 25 |
|
| 26 |
-
# CPU-friendly models
|
| 27 |
self.cpu_models = [
|
| 28 |
-
"
|
| 29 |
-
"distilbert/distilgpt2"
|
| 30 |
]
|
| 31 |
|
| 32 |
def initialize(self) -> bool:
|
|
@@ -36,49 +39,50 @@ class CPULLMProvider:
|
|
| 36 |
print(f"[i] Trying to load {model_id}...")
|
| 37 |
|
| 38 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
pipe = pipeline(
|
| 42 |
-
|
| 43 |
model=model,
|
| 44 |
tokenizer=tokenizer,
|
| 45 |
max_new_tokens=256,
|
| 46 |
temperature=0.3,
|
| 47 |
top_p=0.95,
|
| 48 |
-
device="cpu"
|
| 49 |
)
|
| 50 |
|
| 51 |
self.llm = HuggingFacePipeline(pipeline=pipe)
|
| 52 |
self.current_model = model_id
|
| 53 |
self.is_available = True
|
| 54 |
|
| 55 |
-
# Test
|
| 56 |
-
test_response = self.invoke("Hello")
|
| 57 |
if test_response and len(test_response) > 0:
|
| 58 |
print(f"[✓] Successfully loaded {model_id}")
|
| 59 |
return True
|
| 60 |
|
| 61 |
except Exception as e:
|
| 62 |
-
print(f"[!] Failed to load {model_id}: {str(e)[:
|
| 63 |
continue
|
| 64 |
|
| 65 |
print("[!] All CPU models failed to load")
|
| 66 |
return False
|
| 67 |
|
| 68 |
def invoke(self, prompt: str) -> str:
|
| 69 |
-
"""Invoke the CPU model with
|
| 70 |
if not self.llm:
|
| 71 |
raise Exception("CPU LLM not initialized")
|
| 72 |
|
| 73 |
try:
|
| 74 |
-
#
|
| 75 |
-
|
| 76 |
-
formatted_prompt = f"Instruct: {prompt}\nOutput:"
|
| 77 |
-
elif "llama" in self.current_model.lower():
|
| 78 |
-
formatted_prompt = f"<|user|>\n{prompt}\n<|assistant|>\n"
|
| 79 |
-
else:
|
| 80 |
-
formatted_prompt = prompt
|
| 81 |
-
|
| 82 |
response = self.llm.invoke(formatted_prompt)
|
| 83 |
return response.strip()
|
| 84 |
except Exception as e:
|
|
@@ -86,6 +90,7 @@ class CPULLMProvider:
|
|
| 86 |
raise
|
| 87 |
|
| 88 |
|
|
|
|
| 89 |
class KnowledgeManager:
|
| 90 |
def __init__(self):
|
| 91 |
self.temp_dir = tempfile.mkdtemp()
|
|
|
|
| 14 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 15 |
|
| 16 |
|
| 17 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM, pipeline
|
| 18 |
+
from langchain.llms import HuggingFacePipeline
|
| 19 |
+
|
| 20 |
class CPULLMProvider:
|
| 21 |
"""CPU-based LLM provider using HuggingFace models"""
|
| 22 |
|
|
|
|
| 26 |
self.is_available = False
|
| 27 |
self.current_model = None
|
| 28 |
|
| 29 |
+
# CPU-friendly models
|
| 30 |
self.cpu_models = [
|
| 31 |
+
"google/flan-t5-small", # Encoder-decoder model
|
| 32 |
+
"distilbert/distilgpt2" # Decoder-only (GPT-style)
|
| 33 |
]
|
| 34 |
|
| 35 |
def initialize(self) -> bool:
|
|
|
|
| 39 |
print(f"[i] Trying to load {model_id}...")
|
| 40 |
|
| 41 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 42 |
+
|
| 43 |
+
# Detect model type based on name
|
| 44 |
+
if "flan" in model_id or "t5" in model_id:
|
| 45 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
| 46 |
+
task = "text2text-generation"
|
| 47 |
+
else:
|
| 48 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
| 49 |
+
task = "text-generation"
|
| 50 |
|
| 51 |
pipe = pipeline(
|
| 52 |
+
task,
|
| 53 |
model=model,
|
| 54 |
tokenizer=tokenizer,
|
| 55 |
max_new_tokens=256,
|
| 56 |
temperature=0.3,
|
| 57 |
top_p=0.95,
|
| 58 |
+
device="cpu"
|
| 59 |
)
|
| 60 |
|
| 61 |
self.llm = HuggingFacePipeline(pipeline=pipe)
|
| 62 |
self.current_model = model_id
|
| 63 |
self.is_available = True
|
| 64 |
|
| 65 |
+
# Test model
|
| 66 |
+
test_response = self.invoke("Hello, who are you?")
|
| 67 |
if test_response and len(test_response) > 0:
|
| 68 |
print(f"[✓] Successfully loaded {model_id}")
|
| 69 |
return True
|
| 70 |
|
| 71 |
except Exception as e:
|
| 72 |
+
print(f"[!] Failed to load {model_id}: {str(e)[:200]}...")
|
| 73 |
continue
|
| 74 |
|
| 75 |
print("[!] All CPU models failed to load")
|
| 76 |
return False
|
| 77 |
|
| 78 |
def invoke(self, prompt: str) -> str:
|
| 79 |
+
"""Invoke the CPU model with prompt"""
|
| 80 |
if not self.llm:
|
| 81 |
raise Exception("CPU LLM not initialized")
|
| 82 |
|
| 83 |
try:
|
| 84 |
+
# Optionally modify prompt for specific models if needed
|
| 85 |
+
formatted_prompt = prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
response = self.llm.invoke(formatted_prompt)
|
| 87 |
return response.strip()
|
| 88 |
except Exception as e:
|
|
|
|
| 90 |
raise
|
| 91 |
|
| 92 |
|
| 93 |
+
|
| 94 |
class KnowledgeManager:
|
| 95 |
def __init__(self):
|
| 96 |
self.temp_dir = tempfile.mkdtemp()
|