aamirhameed commited on
Commit
f8c4dcd
·
verified ·
1 Parent(s): 8331a1c

Upload 3 files

Browse files
Files changed (3) hide show
  1. config.py +23 -0
  2. knowledge_engine.py +184 -0
  3. lisa_hr_agent.py +120 -0
config.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+
3
+ class Config:
4
+ """Configuration class for all system settings"""
5
+ # File paths
6
+ KNOWLEDGE_DIR = Path("knowledge_base") # Directory for all knowledge files
7
+ VECTOR_STORE_PATH = Path("vector_store") # Directory for FAISS index
8
+ BM25_STORE_PATH = Path("vector_store/bm25.pkl") # Serialized BM25 retriever
9
+
10
+ # Text processing
11
+ CHUNK_SIZE = 1000 # Optimal for balance between context and retrieval
12
+ CHUNK_OVERLAP = 200
13
+ MAX_CONTEXT_CHUNKS = 5 # Number of chunks to retrieve
14
+
15
+ # Performance
16
+ CACHE_EXPIRY_HOURS = 24
17
+ RELEVANCE_THRESHOLD = 0.72 # Strict similarity threshold
18
+
19
+ @classmethod
20
+ def setup_dirs(cls):
21
+ """Ensure required directories exist"""
22
+ cls.KNOWLEDGE_DIR.mkdir(exist_ok=True)
23
+ cls.VECTOR_STORE_PATH.mkdir(exist_ok=True)
knowledge_engine.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pickle
3
+ from typing import List, Dict, Any
4
+ from datetime import datetime
5
+ from concurrent.futures import ThreadPoolExecutor
6
+
7
+ from config import Config
8
+
9
+ # Core ML/AI libraries
10
+ from langchain_community.document_loaders import TextLoader, DirectoryLoader
11
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
12
+ from langchain_community.vectorstores import FAISS
13
+ from langchain_community.embeddings import OllamaEmbeddings
14
+ from langchain.chains import RetrievalQA
15
+ from langchain.prompts import PromptTemplate
16
+ from langchain_community.llms import Ollama
17
+ from langchain.retrievers import BM25Retriever
18
+
19
+
20
+ class KnowledgeManager:
21
+ """Main knowledge management class handling document processing and Q&A with CoT & MoE routing"""
22
+
23
+ def __init__(self):
24
+ Config.setup_dirs()
25
+ self.embeddings = OllamaEmbeddings(model="mxbai-embed-large")
26
+ self.vector_db, self.bm25_retriever = self._init_retrievers()
27
+ self.qa_chain = self._create_moe_qa_chain()
28
+
29
+ def _init_retrievers(self):
30
+ faiss_index_path = Config.VECTOR_STORE_PATH / "index.faiss"
31
+ faiss_pkl_path = Config.VECTOR_STORE_PATH / "index.pkl"
32
+
33
+ if faiss_index_path.exists() and faiss_pkl_path.exists():
34
+ try:
35
+ vector_db = FAISS.load_local(
36
+ str(Config.VECTOR_STORE_PATH),
37
+ self.embeddings,
38
+ allow_dangerous_deserialization=True
39
+ )
40
+ if Config.BM25_STORE_PATH.exists():
41
+ with open(Config.BM25_STORE_PATH, "rb") as f:
42
+ bm25_retriever = pickle.load(f)
43
+ return vector_db, bm25_retriever
44
+ except Exception as e:
45
+ print(f"[!] Error loading existing vector store: {e}. Rebuilding...")
46
+
47
+ return self._build_retrievers_from_documents()
48
+
49
+ def _build_retrievers_from_documents(self):
50
+ if not any(Config.KNOWLEDGE_DIR.glob("**/*.txt")):
51
+ print("[i] No knowledge files found. Creating default base...")
52
+ self._create_default_knowledge()
53
+
54
+ loader = DirectoryLoader(
55
+ str(Config.KNOWLEDGE_DIR),
56
+ glob="**/*.txt",
57
+ loader_cls=TextLoader,
58
+ loader_kwargs={'encoding': 'utf-8'}
59
+ )
60
+ docs = loader.load()
61
+ splitter = RecursiveCharacterTextSplitter(
62
+ chunk_size=Config.CHUNK_SIZE,
63
+ chunk_overlap=Config.CHUNK_OVERLAP,
64
+ separators=["\n\n", "\n", ". ", "! ", "? ", "; ", " ", ""]
65
+ )
66
+ chunks = splitter.split_documents(docs)
67
+
68
+ vector_db = FAISS.from_documents(chunks, self.embeddings)
69
+ vector_db.save_local(str(Config.VECTOR_STORE_PATH))
70
+
71
+ bm25_retriever = BM25Retriever.from_documents(chunks)
72
+ bm25_retriever.k = Config.MAX_CONTEXT_CHUNKS
73
+
74
+ with open(Config.BM25_STORE_PATH, "wb") as f:
75
+ pickle.dump(bm25_retriever, f)
76
+
77
+ return vector_db, bm25_retriever
78
+
79
+ def _create_default_knowledge(self):
80
+ default_text = """Sirraya xBrain - Advanced AI Platform\n\nCreated by Amir Hameed.\n\nFeatures:\n- Hybrid Retrieval (Vector + BM25)\n- LISA Assistant\n- FAISS, Ollama, BM25 Integration"""
81
+ with open(Config.KNOWLEDGE_DIR / "sirraya_xbrain.txt", "w", encoding="utf-8") as f:
82
+ f.write(default_text)
83
+
84
+ def _parallel_retrieve(self, question: str):
85
+ """Parallel retrieval execution: simulates Mixture of Experts routing"""
86
+
87
+ def retrieve_with_bm25():
88
+ return self.bm25_retriever.get_relevant_documents(question)
89
+
90
+ def retrieve_with_vector():
91
+ # Lowered threshold to 0.3 for better doc retrieval (adjust as needed)
92
+ retriever = self.vector_db.as_retriever(
93
+ search_type="similarity_score_threshold",
94
+ search_kwargs={"k": Config.MAX_CONTEXT_CHUNKS, "score_threshold": 0.83}
95
+ )
96
+ return retriever.get_relevant_documents(question)
97
+
98
+ with ThreadPoolExecutor(max_workers=2) as executor:
99
+ bm25_future = executor.submit(retrieve_with_bm25)
100
+ vector_future = executor.submit(retrieve_with_vector)
101
+ bm25_results = bm25_future.result()
102
+ vector_results = vector_future.result()
103
+
104
+ # Combine results; duplicates are possible, consider deduplication if needed
105
+ return vector_results + bm25_results
106
+
107
+ def _create_moe_qa_chain(self):
108
+ if not self.vector_db or not self.bm25_retriever:
109
+ return None
110
+
111
+ prompt_template = """You are LISA, an AI assistant for Sirraya xBrain. Answer using the context below:
112
+
113
+ Context:
114
+ {context}
115
+
116
+ Question: {question}
117
+
118
+ Instructions:
119
+ - Use only the context.
120
+ - Be accurate and helpful.
121
+ - If unsure, say: "I don’t have that information in my knowledge base."
122
+
123
+ Answer:"""
124
+
125
+ return RetrievalQA.from_chain_type(
126
+ llm=Ollama(model="phi", temperature=0.1),
127
+ chain_type="stuff",
128
+ retriever=self.vector_db.as_retriever(search_kwargs={"k": 1}), # Dummy retriever to satisfy LangChain
129
+ chain_type_kwargs={
130
+ "prompt": PromptTemplate(
131
+ template=prompt_template,
132
+ input_variables=["context", "question"]
133
+ )
134
+ },
135
+ return_source_documents=True
136
+ )
137
+
138
+ def query(self, question: str) -> Dict[str, Any]:
139
+ """Query system using CoT + MoE logic"""
140
+ if not self.qa_chain:
141
+ return {
142
+ "answer": "Knowledge system not initialized. Please reload.",
143
+ "processing_time": 0,
144
+ "source_chunks": []
145
+ }
146
+
147
+ try:
148
+ start_time = datetime.now()
149
+ docs = self._parallel_retrieve(question)
150
+
151
+ # If no docs found, fallback to retriever without threshold for testing
152
+ if not docs:
153
+ retriever = self.vector_db.as_retriever(search_kwargs={"k": Config.MAX_CONTEXT_CHUNKS})
154
+ docs = retriever.get_relevant_documents(question)
155
+
156
+ # Use invoke() for chains with multiple outputs
157
+ result = self.qa_chain.invoke({"input_documents": docs, "query": question})
158
+
159
+ processing_time = (datetime.now() - start_time).total_seconds() * 1000
160
+
161
+ return {
162
+ "answer": result.get("result", ""),
163
+ "processing_time": processing_time,
164
+ "source_chunks": result.get("source_documents", [])
165
+ }
166
+ except Exception as e:
167
+ print(f"[!] Query error: {e}")
168
+ return {
169
+ "answer": f"Error: {e}",
170
+ "processing_time": 0,
171
+ "source_chunks": []
172
+ }
173
+
174
+ def get_knowledge_files_count(self) -> int:
175
+ return len(list(Config.KNOWLEDGE_DIR.glob("**/*.txt"))) if Config.KNOWLEDGE_DIR.exists() else 0
176
+
177
+ def save_uploaded_file(self, uploaded_file, filename: str) -> bool:
178
+ try:
179
+ with open(Config.KNOWLEDGE_DIR / filename, "wb") as f:
180
+ f.write(uploaded_file.getbuffer())
181
+ return True
182
+ except Exception as e:
183
+ print(f"[!] File save error: {e}")
184
+ return False
lisa_hr_agent.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # lisa_hr_agent.py
2
+
3
+ from langchain_community.llms import Ollama
4
+ from datetime import datetime
5
+ from reportlab.lib.pagesizes import A4
6
+ from reportlab.pdfgen import canvas
7
+ from reportlab.lib.units import inch
8
+ import textwrap
9
+
10
+ class LISAHRAgent:
11
+ def __init__(self):
12
+ self.memory = {}
13
+ self.questions = [
14
+ ("name", "What is the full name of the selected candidate?"),
15
+ ("job_title", "What is the job title offered?"),
16
+ ("salary", "What is the monthly salary offered (in Rs.)?"),
17
+ ("joining_date", "What is the joining date? (e.g., 5 June 2025)"),
18
+ ("probation_period", "What is the probation period? (e.g., 3 months)?"),
19
+ ("location", "What is the job location?")
20
+ ]
21
+ self.index = 0
22
+
23
+ def ask_next(self):
24
+ if self.index < len(self.questions):
25
+ return self.questions[self.index][1]
26
+ return None
27
+
28
+ def receive_answer(self, answer):
29
+ key = self.questions[self.index][0]
30
+ self.memory[key] = answer
31
+ self.index += 1
32
+
33
+ def is_complete(self):
34
+ return self.index >= len(self.questions)
35
+
36
+ def get_inputs(self):
37
+ return {
38
+ **self.memory,
39
+ "today": datetime.today().strftime("%d %B %Y")
40
+ }
41
+
42
+ def generate_letter_with_llm(data: dict) -> str:
43
+ llm = Ollama(model="phi") # You can change model if you like
44
+
45
+ prompt = f"""
46
+ You are a professional HR assistant. Write a detailed and formal appointment letter for a selected candidate with the following information:
47
+
48
+ Candidate Name: {data['name']}
49
+ Job Title: {data['job_title']}
50
+ Monthly Salary: Rs. {data['salary']}
51
+ Joining Date: {data['joining_date']}
52
+ Probation Period: {data['probation_period']}
53
+ Location: {data['location']}
54
+ Date of Letter: {data['today']}
55
+ Company Name: Amsaa
56
+ Founder: Amir Hameed
57
+
58
+ Instructions:
59
+ - This is an appointment letter, the candidate has already been selected.
60
+ - Include a letterhead title at the top: "Amsaa – Appointment Letter"
61
+ - Start with date, recipient name, and subject ("Appointment for the position of [Job Title]")
62
+ - Include details like reporting authority, job location, salary in Rs., joining date, probation period.
63
+ - Maintain a professional and polite tone throughout.
64
+ - Add a paragraph welcoming the candidate and emphasizing the company’s vision and values.
65
+ - Conclude with "Sincerely, Amir Hameed, Founder & CEO, Amsaa"
66
+ - Format should be clean and easy to read.
67
+ """
68
+ response = llm.invoke(prompt)
69
+ return response.strip()
70
+
71
+ def save_letter_as_pdf(content: str, filename="appointment_letter.pdf"):
72
+ c = canvas.Canvas(filename, pagesize=A4)
73
+ width, height = A4
74
+ margin = 50
75
+ y_position = height - margin
76
+
77
+ # Header
78
+ c.setFont("Helvetica-Bold", 16)
79
+ c.drawString(margin, y_position, "Amsaa – Appointment Letter")
80
+ y_position -= 30
81
+
82
+ c.setFont("Helvetica", 12)
83
+ # Wrap and draw each line
84
+ for line in content.split('\n'):
85
+ if not line.strip():
86
+ y_position -= 12
87
+ continue
88
+ wrapped_lines = textwrap.wrap(line, width=95)
89
+ for wrap_line in wrapped_lines:
90
+ c.drawString(margin, y_position, wrap_line)
91
+ y_position -= 14
92
+ if y_position < 50: # Add new page if needed
93
+ c.showPage()
94
+ y_position = height - margin
95
+ c.setFont("Helvetica", 12)
96
+
97
+ c.save()
98
+ print(f"\n[✓] Appointment letter saved as: {filename}")
99
+
100
+ def main():
101
+ agent = LISAHRAgent()
102
+
103
+ print("\n👩‍💼 Welcome to LISA HR — AI HR Assistant (Powered by LLM)\n")
104
+
105
+ while not agent.is_complete():
106
+ question = agent.ask_next()
107
+ answer = input(f"{question} ")
108
+ agent.receive_answer(answer)
109
+
110
+ print("\n🧠 Generating Appointment Letter with LLM...\n")
111
+ collected_data = agent.get_inputs()
112
+ letter = generate_letter_with_llm(collected_data)
113
+
114
+ save_letter_as_pdf(letter)
115
+
116
+ print("\n📄 Preview:\n")
117
+ print(letter)
118
+
119
+ if __name__ == "__main__":
120
+ main()