Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import seaborn as sns
|
| 5 |
+
import base64
|
| 6 |
+
import yfinance as yf
|
| 7 |
+
import streamlit as st
|
| 8 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
| 9 |
+
|
| 10 |
+
st.title('Scrapping Yahoo Finance App')
|
| 11 |
+
st.markdown("""
|
| 12 |
+
This app retrieves the list of the S&P 500 (from Wikipedia) and its corresponding stock closing price (year-to-date)!
|
| 13 |
+
* Python libraries: base64, pandas, streamlit, numpy, matplotlib, seaborn
|
| 14 |
+
* Data source: [Wikipedia](https://en.wikipedia.org/wiki/List_of_S%26P_500_companies).
|
| 15 |
+
""")
|
| 16 |
+
st.sidebar.header('User Input Features')
|
| 17 |
+
|
| 18 |
+
#Scrappage des donnees sur Wikipedia
|
| 19 |
+
@st.cache_data
|
| 20 |
+
def load_data():
|
| 21 |
+
url = "https://en.wikipedia.org/wiki/List_of_S%26P_500_companies"
|
| 22 |
+
html = pd.read_html(url,header= 0)
|
| 23 |
+
df = html[0]
|
| 24 |
+
return df
|
| 25 |
+
df = load_data()
|
| 26 |
+
sector = df.groupby('GICS Sector')
|
| 27 |
+
|
| 28 |
+
#Sidebar - Sector Selection
|
| 29 |
+
sorted_sector_unique = sorted(df['GICS Sector'].unique())
|
| 30 |
+
selected_sector = st.sidebar.multiselect('Sector',sorted_sector_unique)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
#Filtering datas
|
| 34 |
+
df_selected_sector = df[(df['GICS Sector'].isin(selected_sector))]
|
| 35 |
+
st.header('Display companies in Selected sector')
|
| 36 |
+
st.write('Data Dimension: ' + str(df_selected_sector.shape[0]) + ' rows and ' + str(df_selected_sector.shape[1]) + ' columns.')
|
| 37 |
+
st.dataframe(df_selected_sector)
|
| 38 |
+
|
| 39 |
+
#Download des datas selectionnees dans le sidebar
|
| 40 |
+
def filedownload(df):
|
| 41 |
+
csv = df.to_csv(index=False)
|
| 42 |
+
b64 = base64.b64encode(csv.encode()).decode() # strings <-> bytes conversions
|
| 43 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="SP500.csv">Download CSV File</a>'
|
| 44 |
+
return href
|
| 45 |
+
|
| 46 |
+
st.markdown(filedownload(df_selected_sector), unsafe_allow_html=True)
|
| 47 |
+
|
| 48 |
+
#Download datas correspondantes de yahoo finance
|
| 49 |
+
data = yf.download(
|
| 50 |
+
tickers = list(df_selected_sector[:10].Symbol),
|
| 51 |
+
period="ytd",
|
| 52 |
+
interval="1d",
|
| 53 |
+
group_by="ticker",
|
| 54 |
+
auto_adjust=True,
|
| 55 |
+
prepost=True,
|
| 56 |
+
threads=True,
|
| 57 |
+
proxy=None
|
| 58 |
+
)
|
| 59 |
+
#Plot Closing price of Selected Symbols
|
| 60 |
+
def price_plot(symbol):
|
| 61 |
+
df = pd.DataFrame(data[symbol].Close)
|
| 62 |
+
df['Date'] = df.index
|
| 63 |
+
plt.fill_between(df.Date, df.Close, color='skyblue', alpha=0.3)
|
| 64 |
+
plt.plot(df.Date, df.Close, color='skyblue', alpha=0.8)
|
| 65 |
+
plt.xticks(rotation=90)
|
| 66 |
+
plt.title(symbol, fontweight='bold')
|
| 67 |
+
plt.xlabel('Date', fontweight='bold')
|
| 68 |
+
plt.ylabel('Closing Price', fontweight='bold')
|
| 69 |
+
return st.pyplot()
|
| 70 |
+
|
| 71 |
+
num_company = st.sidebar.slider('Number of companies',1,5)
|
| 72 |
+
|
| 73 |
+
if st.button('Show plots'):
|
| 74 |
+
st.header('Show Closing price')
|
| 75 |
+
for i in list(df_selected_sector.Symbol)[:num_company]:
|
| 76 |
+
price_plot(i)
|