Update app.py
Browse files
app.py
CHANGED
|
@@ -1,203 +1,6 @@
|
|
| 1 |
-
import gradio
|
| 2 |
-
import subprocess
|
| 3 |
-
from PIL import Image
|
| 4 |
-
import torch, torch.backends.cudnn, torch.backends.cuda
|
| 5 |
-
from min_dalle import MinDalle
|
| 6 |
-
from emoji import demojize
|
| 7 |
-
import string
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
text = text.lower().encode('ascii', errors='ignore').decode()
|
| 12 |
-
allowed_chars = string.ascii_lowercase + ' '
|
| 13 |
-
text = ''.join(i for i in text.lower() if i in allowed_chars)
|
| 14 |
-
text = text[:64]
|
| 15 |
-
text = '-'.join(text.strip().split())
|
| 16 |
-
if len(text) == 0: text = 'blank'
|
| 17 |
-
return text
|
| 18 |
-
|
| 19 |
-
def log_gpu_memory():
|
| 20 |
-
print(subprocess.check_output('nvidia-smi').decode('utf-8'))
|
| 21 |
-
|
| 22 |
-
log_gpu_memory()
|
| 23 |
-
|
| 24 |
-
model = MinDalle(
|
| 25 |
-
is_mega=True,
|
| 26 |
-
is_reusable=True,
|
| 27 |
-
device='cuda',
|
| 28 |
-
dtype=torch.float32
|
| 29 |
-
)
|
| 30 |
-
|
| 31 |
-
log_gpu_memory()
|
| 32 |
-
|
| 33 |
-
def run_model(
|
| 34 |
-
text: str,
|
| 35 |
-
grid_size: int,
|
| 36 |
-
is_seamless: bool,
|
| 37 |
-
save_as_png: bool,
|
| 38 |
-
temperature: float,
|
| 39 |
-
supercondition: str,
|
| 40 |
-
top_k: str
|
| 41 |
-
) -> str:
|
| 42 |
-
torch.set_grad_enabled(False)
|
| 43 |
-
torch.backends.cudnn.enabled = True
|
| 44 |
-
torch.backends.cudnn.deterministic = False
|
| 45 |
-
torch.backends.cudnn.benchmark = True
|
| 46 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
| 47 |
-
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
|
| 48 |
-
|
| 49 |
-
print('text:', text)
|
| 50 |
-
print('grid_size:', grid_size)
|
| 51 |
-
print('is_seamless:', is_seamless)
|
| 52 |
-
print('temperature:', temperature)
|
| 53 |
-
print('supercondition:', supercondition)
|
| 54 |
-
print('top_k:', top_k)
|
| 55 |
-
|
| 56 |
-
try:
|
| 57 |
-
temperature = float(temperature)
|
| 58 |
-
assert(temperature > 1e-6)
|
| 59 |
-
except:
|
| 60 |
-
raise Exception('Temperature must be a positive nonzero number')
|
| 61 |
-
try:
|
| 62 |
-
grid_size = int(grid_size)
|
| 63 |
-
assert(grid_size <= 5)
|
| 64 |
-
assert(grid_size >= 1)
|
| 65 |
-
except:
|
| 66 |
-
raise Exception('Grid size must be between 1 and 5')
|
| 67 |
-
try:
|
| 68 |
-
top_k = int(top_k)
|
| 69 |
-
assert(top_k <= 16384)
|
| 70 |
-
assert(top_k >= 1)
|
| 71 |
-
except:
|
| 72 |
-
raise Exception('Top k must be between 1 and 16384')
|
| 73 |
-
|
| 74 |
-
with torch.no_grad():
|
| 75 |
-
image = model.generate_image(
|
| 76 |
-
text = text,
|
| 77 |
-
seed = -1,
|
| 78 |
-
grid_size = grid_size,
|
| 79 |
-
is_seamless = bool(is_seamless),
|
| 80 |
-
temperature = temperature,
|
| 81 |
-
supercondition_factor = float(supercondition),
|
| 82 |
-
top_k = top_k,
|
| 83 |
-
is_verbose = True
|
| 84 |
-
)
|
| 85 |
-
|
| 86 |
-
log_gpu_memory()
|
| 87 |
-
|
| 88 |
-
ext = 'png' if bool(save_as_png) else 'jpg'
|
| 89 |
-
filename = filename_from_text(text)
|
| 90 |
-
image_path = '{}.{}'.format(filename, ext)
|
| 91 |
-
image.save(image_path)
|
| 92 |
-
|
| 93 |
-
return image_path
|
| 94 |
-
|
| 95 |
-
demo = gradio.Blocks(analytics_enabled=True)
|
| 96 |
-
|
| 97 |
-
with demo:
|
| 98 |
-
with gradio.Row():
|
| 99 |
-
with gradio.Column():
|
| 100 |
-
input_text = gradio.Textbox(
|
| 101 |
-
label='Input Text',
|
| 102 |
-
value='Moai statue giving a TED Talk',
|
| 103 |
-
lines=3
|
| 104 |
-
)
|
| 105 |
-
run_button = gradio.Button(value='Generate Image').style(full_width=True)
|
| 106 |
-
output_image = gradio.Image(
|
| 107 |
-
value='examples/moai-statue.jpg',
|
| 108 |
-
label='Output Image',
|
| 109 |
-
type='file',
|
| 110 |
-
interactive=False
|
| 111 |
-
)
|
| 112 |
-
|
| 113 |
-
with gradio.Column():
|
| 114 |
-
gradio.Markdown('## Settings')
|
| 115 |
-
with gradio.Row():
|
| 116 |
-
grid_size = gradio.Slider(
|
| 117 |
-
label='Grid Size',
|
| 118 |
-
value=5,
|
| 119 |
-
minimum=1,
|
| 120 |
-
maximum=5,
|
| 121 |
-
step=1
|
| 122 |
-
)
|
| 123 |
-
save_as_png = gradio.Checkbox(
|
| 124 |
-
label='Output PNG',
|
| 125 |
-
value=False
|
| 126 |
-
)
|
| 127 |
-
is_seamless = gradio.Checkbox(
|
| 128 |
-
label='Seamless',
|
| 129 |
-
value=False
|
| 130 |
-
)
|
| 131 |
-
gradio.Markdown('#### Advanced')
|
| 132 |
-
with gradio.Row():
|
| 133 |
-
temperature = gradio.Number(
|
| 134 |
-
label='Temperature',
|
| 135 |
-
value=1
|
| 136 |
-
)
|
| 137 |
-
top_k = gradio.Dropdown(
|
| 138 |
-
label='Top-k',
|
| 139 |
-
choices=[str(2 ** i) for i in range(15)],
|
| 140 |
-
value='128'
|
| 141 |
-
)
|
| 142 |
-
supercondition = gradio.Dropdown(
|
| 143 |
-
label='Super Condition',
|
| 144 |
-
choices=[str(2 ** i) for i in range(2, 7)],
|
| 145 |
-
value='16'
|
| 146 |
-
)
|
| 147 |
-
|
| 148 |
-
gradio.Markdown(
|
| 149 |
-
"""
|
| 150 |
-
####
|
| 151 |
-
- **Input Text**: For long prompts, only the first 64 text tokens will be used to generate the image.
|
| 152 |
-
- **Grid Size**: Size of the image grid. 3x3 takes about 15 seconds.
|
| 153 |
-
- **Seamless**: Tile images in image token space instead of pixel space.
|
| 154 |
-
- **Temperature**: High temperature increases the probability of sampling low scoring image tokens.
|
| 155 |
-
- **Top-k**: Each image token is sampled from the top-k scoring tokens.
|
| 156 |
-
- **Super Condition**: Higher values can result in better agreement with the text.
|
| 157 |
-
"""
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
-
gradio.Examples(
|
| 161 |
-
examples=[
|
| 162 |
-
['Rusty Iron Man suit found abandoned in the woods being reclaimed by nature', 3, 'examples/rusty-iron-man.jpg'],
|
| 163 |
-
['Moai statue giving a TED Talk', 5, 'examples/moai-statue.jpg'],
|
| 164 |
-
['Court sketch of Godzilla on trial', 5, 'examples/godzilla-trial.jpg'],
|
| 165 |
-
['lofi nuclear war to relax and study to', 5, 'examples/lofi-nuclear-war.jpg'],
|
| 166 |
-
['Karl Marx slimed at Kids Choice Awards', 4, 'examples/marx-slimed.jpg'],
|
| 167 |
-
['Scientists trying to rhyme orange with banana', 4, 'examples/scientists-rhyme.jpg'],
|
| 168 |
-
['Jesus turning water into wine on Americas Got Talent', 5, 'examples/jesus-talent.jpg'],
|
| 169 |
-
['Elmo in a street riot throwing a Molotov cocktail, hyperrealistic', 5, 'examples/elmo-riot.jpg'],
|
| 170 |
-
['Trail cam footage of gollum eating watermelon', 4, 'examples/gollum.jpg'],
|
| 171 |
-
['Funeral at Whole Foods', 4, 'examples/funeral-whole-foods.jpg'],
|
| 172 |
-
['Singularity, hyperrealism', 5, 'examples/singularity.jpg'],
|
| 173 |
-
['Astronaut riding a horse hyperrealistic', 5, 'examples/astronaut-horse.jpg'],
|
| 174 |
-
['An astronaut walking on Mars next to a Starship rocket, realistic', 5, 'examples/astronaut-mars.jpg'],
|
| 175 |
-
['Nuclear explosion broccoli', 4, 'examples/nuclear-broccoli.jpg'],
|
| 176 |
-
['Dali painting of WALL·E', 5, 'examples/dali-walle.jpg'],
|
| 177 |
-
['Cleopatra checking her iPhone', 4, 'examples/cleopatra-iphone.jpg'],
|
| 178 |
-
],
|
| 179 |
-
inputs=[
|
| 180 |
-
input_text,
|
| 181 |
-
grid_size,
|
| 182 |
-
output_image
|
| 183 |
-
],
|
| 184 |
-
examples_per_page=20
|
| 185 |
-
)
|
| 186 |
-
|
| 187 |
-
run_button.click(
|
| 188 |
-
fn=run_model,
|
| 189 |
-
inputs=[
|
| 190 |
-
input_text,
|
| 191 |
-
grid_size,
|
| 192 |
-
is_seamless,
|
| 193 |
-
save_as_png,
|
| 194 |
-
temperature,
|
| 195 |
-
supercondition,
|
| 196 |
-
top_k
|
| 197 |
-
],
|
| 198 |
-
outputs=[
|
| 199 |
-
output_image
|
| 200 |
-
]
|
| 201 |
-
)
|
| 202 |
|
| 203 |
demo.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
with gr.Blocks() as demo:
|
| 4 |
+
gr.Gallery(["examples/dali-walle.jpg"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
demo.launch()
|