Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# HuggingFace Spaces file to run a Gradio Interface for the ALBERT v2 Steam Review Constructiveness Classifier by Samuel Ruairí Bullard
|
| 2 |
+
|
| 3 |
+
# Package Imports
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
# Checks if CUDA is available on the machine
|
| 9 |
+
print("CUDA Available: ", torch.cuda.is_available())
|
| 10 |
+
|
| 11 |
+
# if not os.path.isfile("./README.md"):
|
| 12 |
+
# !git clone https://huggingface.co/spaces/abullard1/albert-v2-steam-review-constructiveness-classifier
|
| 13 |
+
|
| 14 |
+
# Sets the torch dtype to 16-bit half-precision floating-point format if CUDA is available, otherwise sets it to 32-bit single-precision floating-point format. (Available for GPUs with Tensor Cores like NVIDIA's Volta, Turing, Ampere Architectures have for example)
|
| 15 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 16 |
+
torch_d_type = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 17 |
+
print(f"Device: {device}")
|
| 18 |
+
|
| 19 |
+
# Defines the name of the base model, the classifier was fine-tuned from
|
| 20 |
+
base_model_name = "albert-base-v2"
|
| 21 |
+
|
| 22 |
+
# Defines the name of the fine-tuned model used for the steam-review constructiveness classification
|
| 23 |
+
finetuned_model_name = "abullard1/albert-v2-steam-review-constructiveness-classifier"
|
| 24 |
+
|
| 25 |
+
# PyTorch classifier pipeline
|
| 26 |
+
classifier = pipeline(
|
| 27 |
+
task="text-classification", # Defines the task
|
| 28 |
+
model=finetuned_model_name, # Defines the fine-tuned model to use
|
| 29 |
+
tokenizer=base_model_name, # Defines the tokenizer to use (same as the base model)
|
| 30 |
+
device=device, # Defines the device the classification will be run on
|
| 31 |
+
top_k=None, # Returns all scores for all labels, not just the one with the highest score
|
| 32 |
+
truncation=True, # Truncates the input text if it exceeds the maximum length
|
| 33 |
+
max_length=512, # Defines the maximum length of the input text (512 for BERT. Explicitly set here)
|
| 34 |
+
torch_dtype=torch_d_type
|
| 35 |
+
# Sets the torch dtype to 16-bit half-precision floating-point format if CUDA is available, otherwise sets it to 32-bit single-precision floating-point format
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# Extracts the labels and scores from the prediction result
|
| 40 |
+
def classify_steam_review(input_text):
|
| 41 |
+
result = classifier(input_text)
|
| 42 |
+
|
| 43 |
+
label_1, label_2 = result[0][0]["label"], result[0][1]["label"]
|
| 44 |
+
score_1, score_2 = result[0][0]["score"], result[0][1]["score"]
|
| 45 |
+
|
| 46 |
+
return {"label_1": label_1, "score_1": score_1, "label_2": label_2, "score_2": score_2}
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# Provides a textual representation of the classification result
|
| 50 |
+
def get_steam_review_classification_result_text(label_1, score_1, label_2, score_2):
|
| 51 |
+
# Maps label values to constructiveness
|
| 52 |
+
def label_to_constructiveness(label):
|
| 53 |
+
return "Constructive" if label == "LABEL_1" else "Not Constructive"
|
| 54 |
+
|
| 55 |
+
# Formats the output in a readable format
|
| 56 |
+
def format_output(label, score, emoji):
|
| 57 |
+
return f'{label_to_constructiveness(label)} with a score of {score}. {emoji}'
|
| 58 |
+
|
| 59 |
+
# Determines the label and score with the highest score
|
| 60 |
+
if score_1 >= score_2:
|
| 61 |
+
return format_output(label_1, score_1, "👍🏻")
|
| 62 |
+
else:
|
| 63 |
+
return format_output(label_2, score_2, "👎🏻")
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# Examples Steam Reviews to display in the Gradio Interface using the "examples" parameter
|
| 67 |
+
examples = [
|
| 68 |
+
[
|
| 69 |
+
"Review: I think this is a great game but it still has some room for improvement., Playtime: 12, Voted Up: True, Upvotes: 1, Votes Funny: 0"],
|
| 70 |
+
["Review: Trash game. Deleted., Playtime: 1, Voted Up: False, Upvotes: 0, Votes Funny: 0"],
|
| 71 |
+
["Review: This game is amazing., Playtime: 100, Voted Up: True, Upvotes: 1, Votes Funny: 0"],
|
| 72 |
+
["Review: Great game, but the community is toxic., Playtime: 50, Voted Up: True, Upvotes: 1, Votes Funny: 0"]
|
| 73 |
+
]
|
| 74 |
+
|
| 75 |
+
# HTML article to display in the Gradio Interface using the "article" parameter
|
| 76 |
+
article = (
|
| 77 |
+
"""
|
| 78 |
+
*Format your input as follows for the best results: **Review**: {review_text}, **Playtime**: {author_playtime_at_review}, **Voted Up**: {voted_up}, **Upvotes**: {upvotes}, **Votes Funny**: {votes_funny}.*
|
| 79 |
+
"""
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
# Main Gradio Interface using Gradio Blocks
|
| 83 |
+
# Docs: https://www.gradio.app/docs/gradio/blocks
|
| 84 |
+
with gr.Blocks() as steam_reviews_classifier_block:
|
| 85 |
+
gr.Markdown("## Steam Review Constructiveness Classifier")
|
| 86 |
+
gr.Markdown(article)
|
| 87 |
+
|
| 88 |
+
# Main Column
|
| 89 |
+
with gr.Column():
|
| 90 |
+
# Upper Row (Input Textbox, Constructive Label, Not Constructive Label)
|
| 91 |
+
with gr.Row(equal_height=True):
|
| 92 |
+
# Input Textbox Column
|
| 93 |
+
with gr.Column():
|
| 94 |
+
input_textbox = gr.Textbox(
|
| 95 |
+
lines=8,
|
| 96 |
+
label="Steam Review",
|
| 97 |
+
# info="Input Steam Review here",
|
| 98 |
+
placeholder="Review: I think this is a great game but it still has some room for improvement., Playtime: 12, Voted Up: True, Upvotes: 1, Votes Funny: 0",
|
| 99 |
+
show_copy_button=False,
|
| 100 |
+
value="Review: I think this is a great game but it still has some room for improvement., Playtime: 12, Voted Up: True, Upvotes: 1, Votes Funny: 0"
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# Constructive and Not Constructive Labels Column
|
| 104 |
+
with gr.Column():
|
| 105 |
+
constructive_label = gr.Label(label="Constructive")
|
| 106 |
+
not_constructive_label = gr.Label(label="Not Constructive")
|
| 107 |
+
|
| 108 |
+
# Examples Component
|
| 109 |
+
example_component = gr.Examples(
|
| 110 |
+
examples=examples,
|
| 111 |
+
inputs=input_textbox
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
# Output Textbox which shows the textual representation of the Constructiveness Prediction
|
| 115 |
+
output_textbox = gr.Textbox(
|
| 116 |
+
label="Constructiveness Prediction",
|
| 117 |
+
interactive=False,
|
| 118 |
+
show_copy_button=False,
|
| 119 |
+
# info="Textual representation of the Constructiveness Prediction"
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# Submit Button
|
| 123 |
+
submit_button = gr.Button(value="Submit")
|
| 124 |
+
|
| 125 |
+
# Function to run when the Submit Button is clicked (Passes the input text to the classifier and displays the output text)
|
| 126 |
+
def on_submit_click(input_text):
|
| 127 |
+
classification_result = classify_steam_review(input_text)
|
| 128 |
+
classification_result_text = get_steam_review_classification_result_text(
|
| 129 |
+
label_1=classification_result["label_1"],
|
| 130 |
+
score_1=classification_result["score_1"],
|
| 131 |
+
label_2=classification_result["label_2"],
|
| 132 |
+
score_2=classification_result["score_2"]
|
| 133 |
+
)
|
| 134 |
+
output_text = classification_result_text
|
| 135 |
+
constructive, not_constructive = str(classification_result["score_1"]), str(classification_result["score_2"])
|
| 136 |
+
return output_text, constructive, not_constructive
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
# onClick event for the Submit Button
|
| 140 |
+
submit_button.click(
|
| 141 |
+
fn=on_submit_click,
|
| 142 |
+
inputs=input_textbox,
|
| 143 |
+
outputs=[output_textbox, not_constructive_label, constructive_label]
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
# Launches the Gradio Blocks Interface
|
| 147 |
+
steam_reviews_classifier_block.launch()
|