Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import spaces
|
| 3 |
+
import torch
|
| 4 |
+
import torchaudio
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import logging
|
| 7 |
+
from whosper import WhosperTranscriber
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
logging.basicConfig(level=logging.INFO)
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
if torch.cuda.is_available():
|
| 15 |
+
device = "cuda"
|
| 16 |
+
logger.info("Using CUDA for inference.")
|
| 17 |
+
elif torch.backends.mps.is_available():
|
| 18 |
+
device = "mps"
|
| 19 |
+
logger.info("Using MPS for inference.")
|
| 20 |
+
else:
|
| 21 |
+
device = "cpu"
|
| 22 |
+
logger.info("Using CPU for inference.")
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
model_id = "sudoping01/maliba-asr-v1"
|
| 26 |
+
transcriber = WhosperTranscriber(model_id=model_id)
|
| 27 |
+
logger.info(f"Transcriber initialized with model: {model_id}")
|
| 28 |
+
|
| 29 |
+
def resample_audio(audio_path, target_sample_rate=16000):
|
| 30 |
+
|
| 31 |
+
"""
|
| 32 |
+
Converts the audio file to the target sampling rate (16000 Hz).
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
audio_path (str): Path to the audio file.
|
| 36 |
+
target_sample_rate (int): The desired sample rate.
|
| 37 |
+
Returns:
|
| 38 |
+
A tensor containing the resampled audio data and the target sample rate.
|
| 39 |
+
"""
|
| 40 |
+
try:
|
| 41 |
+
waveform, original_sample_rate = torchaudio.load(audio_path)
|
| 42 |
+
|
| 43 |
+
if original_sample_rate != target_sample_rate:
|
| 44 |
+
resampler = torchaudio.transforms.Resample(
|
| 45 |
+
orig_freq=original_sample_rate,
|
| 46 |
+
new_freq=target_sample_rate
|
| 47 |
+
)
|
| 48 |
+
waveform = resampler(waveform)
|
| 49 |
+
|
| 50 |
+
return waveform, target_sample_rate
|
| 51 |
+
except Exception as e:
|
| 52 |
+
logger.error(f"Error resampling audio: {e}")
|
| 53 |
+
raise e
|
| 54 |
+
|
| 55 |
+
@spaces.GPU()
|
| 56 |
+
def transcribe_audio(audio_file):
|
| 57 |
+
|
| 58 |
+
"""
|
| 59 |
+
Transcribes the provided audio file into Bambara text using Whosper.
|
| 60 |
+
|
| 61 |
+
Args:
|
| 62 |
+
audio_file: The path to the audio file to transcribe.
|
| 63 |
+
Returns:
|
| 64 |
+
A string representing the transcribed Bambara text.
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
if audio_file is None:
|
| 68 |
+
return "Please provide an audio file for transcription."
|
| 69 |
+
|
| 70 |
+
try:
|
| 71 |
+
logger.info(f"Transcribing audio file: {audio_file}")
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
result = transcriber.transcribe_audio(audio_file)
|
| 75 |
+
|
| 76 |
+
logger.info("Transcription successful.")
|
| 77 |
+
return result.get("text", "")
|
| 78 |
+
|
| 79 |
+
except Exception as e:
|
| 80 |
+
logger.error(f"Transcription failed: {e}")
|
| 81 |
+
return f"Error during transcription: {str(e)}"
|
| 82 |
+
|
| 83 |
+
def get_example_files(directory="./examples"):
|
| 84 |
+
|
| 85 |
+
"""
|
| 86 |
+
Returns a list of audio files from the examples directory.
|
| 87 |
+
|
| 88 |
+
Args:
|
| 89 |
+
directory (str): The directory to search for audio files.
|
| 90 |
+
Returns:
|
| 91 |
+
list: A list of paths to the audio files.
|
| 92 |
+
"""
|
| 93 |
+
|
| 94 |
+
if not os.path.exists(directory):
|
| 95 |
+
logger.warning(f"Examples directory {directory} not found.")
|
| 96 |
+
return []
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
audio_extensions = ['.wav', '.mp3', '.m4a', '.flac', '.ogg']
|
| 100 |
+
audio_files = []
|
| 101 |
+
|
| 102 |
+
try:
|
| 103 |
+
files = os.listdir(directory)
|
| 104 |
+
for file in files:
|
| 105 |
+
if any(file.lower().endswith(ext) for ext in audio_extensions):
|
| 106 |
+
full_path = os.path.abspath(os.path.join(directory, file))
|
| 107 |
+
audio_files.append(full_path)
|
| 108 |
+
|
| 109 |
+
logger.info(f"Found {len(audio_files)} example audio files.")
|
| 110 |
+
return audio_files[:5]
|
| 111 |
+
|
| 112 |
+
except Exception as e:
|
| 113 |
+
logger.error(f"Error reading examples directory: {e}")
|
| 114 |
+
return []
|
| 115 |
+
|
| 116 |
+
def build_interface():
|
| 117 |
+
"""
|
| 118 |
+
Builds the Gradio interface for Bambara speech recognition.
|
| 119 |
+
"""
|
| 120 |
+
|
| 121 |
+
example_files = get_example_files()
|
| 122 |
+
|
| 123 |
+
with gr.Blocks(title="Bambara Speech Recognition") as demo:
|
| 124 |
+
gr.Markdown(
|
| 125 |
+
"""
|
| 126 |
+
# π€ Bambara Automatic Speech Recognition
|
| 127 |
+
|
| 128 |
+
**Powered by MALIBA-AI**
|
| 129 |
+
|
| 130 |
+
Convert Bambara speech to text using our state-of-the-art ASR model. You can either:
|
| 131 |
+
- ποΈ **Record** your voice directly
|
| 132 |
+
- π **Upload** an audio file
|
| 133 |
+
- π΅ **Try** our example audio files
|
| 134 |
+
|
| 135 |
+
## Supported Audio Formats
|
| 136 |
+
WAV, MP3, M4A, FLAC, OGG
|
| 137 |
+
"""
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
with gr.Row():
|
| 141 |
+
with gr.Column():
|
| 142 |
+
|
| 143 |
+
audio_input = gr.Audio(
|
| 144 |
+
label="π€ Record or Upload Audio",
|
| 145 |
+
type="filepath",
|
| 146 |
+
sources=["microphone", "upload"]
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
transcribe_btn = gr.Button(
|
| 150 |
+
"π Transcribe Audio",
|
| 151 |
+
variant="primary",
|
| 152 |
+
size="lg"
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
| 157 |
+
|
| 158 |
+
with gr.Column():
|
| 159 |
+
output_text = gr.Textbox(
|
| 160 |
+
label="π Transcribed Text (Bambara)",
|
| 161 |
+
lines=8,
|
| 162 |
+
placeholder="Your transcribed Bambara text will appear here...",
|
| 163 |
+
interactive=False
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
if example_files:
|
| 168 |
+
gr.Markdown("## π΅ Try These Examples")
|
| 169 |
+
gr.Examples(
|
| 170 |
+
examples=[[f] for f in example_files],
|
| 171 |
+
inputs=[audio_input],
|
| 172 |
+
outputs=output_text,
|
| 173 |
+
fn=transcribe_audio,
|
| 174 |
+
cache_examples=False,
|
| 175 |
+
label="Example Audio Files"
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
gr.Markdown(
|
| 180 |
+
"""
|
| 181 |
+
---
|
| 182 |
+
|
| 183 |
+
## βΉοΈ About This Model
|
| 184 |
+
|
| 185 |
+
- **Model:** [sudoping01/maliba-asr-v1](https://huggingface.co/sudoping01/maliba-asr-v1)
|
| 186 |
+
- **Developer:** MALIBA-AI
|
| 187 |
+
- **Language:** Bambara (bm)
|
| 188 |
+
- **Task:** Automatic Speech Recognition (ASR)
|
| 189 |
+
- **Sample Rate:** 16kHz (automatically resampled)
|
| 190 |
+
|
| 191 |
+
## π How to Use
|
| 192 |
+
|
| 193 |
+
1. **Record Audio:** Click the microphone button and speak in Bambara
|
| 194 |
+
2. **Upload File:** Click the upload button to select an audio file
|
| 195 |
+
3. **Transcribe:** Click the "Transcribe Audio" button
|
| 196 |
+
4. **View Results:** See your transcribed text in Bambara
|
| 197 |
+
|
| 198 |
+
## π Performance Notes
|
| 199 |
+
|
| 200 |
+
- Best results with clear speech and minimal background noise
|
| 201 |
+
- Supports various audio formats and durations
|
| 202 |
+
- Optimized for Bambara language patterns and phonetics
|
| 203 |
+
"""
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
transcribe_btn.click(
|
| 208 |
+
fn=transcribe_audio,
|
| 209 |
+
inputs=[audio_input],
|
| 210 |
+
outputs=output_text,
|
| 211 |
+
show_progress=True
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
clear_btn.click(
|
| 215 |
+
fn=lambda: (None, ""),
|
| 216 |
+
outputs=[audio_input, output_text]
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
audio_input.change(
|
| 221 |
+
fn=transcribe_audio,
|
| 222 |
+
inputs=[audio_input],
|
| 223 |
+
outputs=output_text,
|
| 224 |
+
show_progress=True
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
return demo
|
| 228 |
+
|
| 229 |
+
def main():
|
| 230 |
+
"""
|
| 231 |
+
Main function to launch the Gradio interface.
|
| 232 |
+
"""
|
| 233 |
+
logger.info("Starting Bambara ASR Gradio interface.")
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
interface = build_interface()
|
| 237 |
+
interface.launch(
|
| 238 |
+
share=False,
|
| 239 |
+
server_name="0.0.0.0",
|
| 240 |
+
server_port=7860
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
logger.info("Gradio interface launched successfully.")
|
| 244 |
+
|
| 245 |
+
if __name__ == "__main__":
|
| 246 |
+
main()
|