Spaces:
Runtime error
Runtime error
Update: transformers 4.35, examples
Browse files- .gitattributes +3 -0
- app.py +26 -55
- assets/{captioning_example_2.png → food.png} +2 -2
- assets/girl_hat.png +3 -0
- assets/jobs.png +3 -0
- requirements.txt +1 -1
.gitattributes
CHANGED
|
@@ -37,3 +37,6 @@ assets/captioning_example_2.png filter=lfs diff=lfs merge=lfs -text
|
|
| 37 |
assets/vqa_example_1.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
assets/vqa_example_2.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
assets/docvqa_example.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
assets/vqa_example_1.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
assets/vqa_example_2.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
assets/docvqa_example.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
assets/food.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
assets/girl_hat.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
assets/jobs.png filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
|
@@ -2,15 +2,13 @@ import gradio as gr
|
|
| 2 |
import re
|
| 3 |
import torch
|
| 4 |
from PIL import Image
|
| 5 |
-
from transformers import
|
| 6 |
|
| 7 |
model_id = "adept/fuyu-8b"
|
| 8 |
dtype = torch.bfloat16
|
| 9 |
-
device = "cuda"
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=tokenizer)
|
| 14 |
|
| 15 |
CAPTION_PROMPT = "Generate a coco-style caption.\n"
|
| 16 |
DETAILED_CAPTION_PROMPT = "What is happening in this image?"
|
|
@@ -38,12 +36,11 @@ def pad_to_size(image, canvas_width=1920, canvas_height=1080):
|
|
| 38 |
|
| 39 |
def predict(image, prompt):
|
| 40 |
# image = image.convert('RGB')
|
| 41 |
-
model_inputs = processor(text=prompt, images=[image])
|
| 42 |
-
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
|
| 43 |
|
| 44 |
generation_output = model.generate(**model_inputs, max_new_tokens=50)
|
| 45 |
prompt_len = model_inputs["input_ids"].shape[-1]
|
| 46 |
-
return
|
| 47 |
|
| 48 |
def caption(image, detailed_captioning):
|
| 49 |
if detailed_captioning:
|
|
@@ -55,43 +52,6 @@ def caption(image, detailed_captioning):
|
|
| 55 |
def set_example_image(example: list) -> dict:
|
| 56 |
return gr.Image.update(value=example[0])
|
| 57 |
|
| 58 |
-
def scale_factor_to_fit(original_size, target_size=(1920, 1080)):
|
| 59 |
-
width, height = original_size
|
| 60 |
-
max_width, max_height = target_size
|
| 61 |
-
if width <= max_width and height <= max_height:
|
| 62 |
-
return 1.0
|
| 63 |
-
return min(max_width/width, max_height/height)
|
| 64 |
-
|
| 65 |
-
def tokens_to_box(tokens, original_size):
|
| 66 |
-
bbox_start = tokenizer.convert_tokens_to_ids("<0x00>")
|
| 67 |
-
bbox_end = tokenizer.convert_tokens_to_ids("<0x01>")
|
| 68 |
-
try:
|
| 69 |
-
# Assumes a single box
|
| 70 |
-
bbox_start_pos = (tokens == bbox_start).nonzero(as_tuple=True)[0].item()
|
| 71 |
-
bbox_end_pos = (tokens == bbox_end).nonzero(as_tuple=True)[0].item()
|
| 72 |
-
|
| 73 |
-
if bbox_end_pos != bbox_start_pos + 5:
|
| 74 |
-
return tokens
|
| 75 |
-
|
| 76 |
-
# Retrieve transformed coordinates from tokens
|
| 77 |
-
coords = tokenizer.convert_ids_to_tokens(tokens[bbox_start_pos+1:bbox_end_pos])
|
| 78 |
-
|
| 79 |
-
# Scale back to original image size and multiply by 2
|
| 80 |
-
scale = scale_factor_to_fit(original_size)
|
| 81 |
-
top, left, bottom, right = [2 * int(float(c)/scale) for c in coords]
|
| 82 |
-
|
| 83 |
-
# Replace the IDs so they get detokenized right
|
| 84 |
-
replacement = f" <box>{top}, {left}, {bottom}, {right}</box>"
|
| 85 |
-
replacement = tokenizer.tokenize(replacement)[1:]
|
| 86 |
-
replacement = tokenizer.convert_tokens_to_ids(replacement)
|
| 87 |
-
replacement = torch.tensor(replacement).to(tokens)
|
| 88 |
-
|
| 89 |
-
tokens = torch.cat([tokens[:bbox_start_pos], replacement, tokens[bbox_end_pos+1:]], 0)
|
| 90 |
-
return tokens
|
| 91 |
-
except:
|
| 92 |
-
gr.Error("Can't convert tokens.")
|
| 93 |
-
return tokens
|
| 94 |
-
|
| 95 |
def coords_from_response(response):
|
| 96 |
# y1, x1, y2, x2
|
| 97 |
pattern = r"<box>(\d+),\s*(\d+),\s*(\d+),\s*(\d+)</box>"
|
|
@@ -111,14 +71,12 @@ def localize(image, query):
|
|
| 111 |
padded = resize_to_max(image)
|
| 112 |
padded = pad_to_size(padded)
|
| 113 |
|
| 114 |
-
model_inputs = processor(text=prompt, images=[padded])
|
| 115 |
-
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
decoded = tokenizer.decode(tokens, skip_special_tokens=True)
|
| 122 |
coords = coords_from_response(decoded)
|
| 123 |
return image, [(coords, f"Location of \"{query}\"")]
|
| 124 |
|
|
@@ -145,6 +103,13 @@ with gr.Blocks(css=css) as demo:
|
|
| 145 |
"""
|
| 146 |
)
|
| 147 |
with gr.Tab("Visual Question Answering"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
with gr.Row():
|
| 149 |
with gr.Column():
|
| 150 |
image_input = gr.Image(label="Upload your Image", type="pil")
|
|
@@ -154,8 +119,14 @@ with gr.Blocks(css=css) as demo:
|
|
| 154 |
vqa_btn = gr.Button("Answer Visual Question")
|
| 155 |
|
| 156 |
gr.Examples(
|
| 157 |
-
[
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
inputs = [image_input, text_input],
|
| 160 |
outputs = [vqa_output],
|
| 161 |
fn=predict,
|
|
@@ -173,7 +144,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 173 |
captioning_btn = gr.Button("Generate Caption")
|
| 174 |
|
| 175 |
gr.Examples(
|
| 176 |
-
[["assets/captioning_example_1.png", False], ["assets/
|
| 177 |
inputs = [captioning_input, detailed_captioning_checkbox],
|
| 178 |
outputs = [captioning_output],
|
| 179 |
fn=caption,
|
|
|
|
| 2 |
import re
|
| 3 |
import torch
|
| 4 |
from PIL import Image
|
| 5 |
+
from transformers import FuyuForCausalLM, FuyuProcessor
|
| 6 |
|
| 7 |
model_id = "adept/fuyu-8b"
|
| 8 |
dtype = torch.bfloat16
|
|
|
|
| 9 |
|
| 10 |
+
model = FuyuForCausalLM.from_pretrained(model_id, device_map="cuda", torch_dtype=dtype)
|
| 11 |
+
processor = FuyuProcessor.from_pretrained(model_id)
|
|
|
|
| 12 |
|
| 13 |
CAPTION_PROMPT = "Generate a coco-style caption.\n"
|
| 14 |
DETAILED_CAPTION_PROMPT = "What is happening in this image?"
|
|
|
|
| 36 |
|
| 37 |
def predict(image, prompt):
|
| 38 |
# image = image.convert('RGB')
|
| 39 |
+
model_inputs = processor(text=prompt, images=[image]).to(device=model.device)
|
|
|
|
| 40 |
|
| 41 |
generation_output = model.generate(**model_inputs, max_new_tokens=50)
|
| 42 |
prompt_len = model_inputs["input_ids"].shape[-1]
|
| 43 |
+
return processor.decode(generation_output[0][prompt_len:], skip_special_tokens=True)
|
| 44 |
|
| 45 |
def caption(image, detailed_captioning):
|
| 46 |
if detailed_captioning:
|
|
|
|
| 52 |
def set_example_image(example: list) -> dict:
|
| 53 |
return gr.Image.update(value=example[0])
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
def coords_from_response(response):
|
| 56 |
# y1, x1, y2, x2
|
| 57 |
pattern = r"<box>(\d+),\s*(\d+),\s*(\d+),\s*(\d+)</box>"
|
|
|
|
| 71 |
padded = resize_to_max(image)
|
| 72 |
padded = pad_to_size(padded)
|
| 73 |
|
| 74 |
+
model_inputs = processor(text=prompt, images=[padded]).to(device=model.device)
|
|
|
|
| 75 |
|
| 76 |
+
outputs = model.generate(**model_inputs, max_new_tokens=40)
|
| 77 |
+
post_processed_bbox_tokens = processor.post_process_box_coordinates(outputs)[0]
|
| 78 |
+
decoded = processor.decode(post_processed_bbox_tokens, skip_special_tokens=True)
|
| 79 |
+
decoded = decoded.split('\x04', 1)[1] if '\x04' in decoded else ''
|
|
|
|
| 80 |
coords = coords_from_response(decoded)
|
| 81 |
return image, [(coords, f"Location of \"{query}\"")]
|
| 82 |
|
|
|
|
| 103 |
"""
|
| 104 |
)
|
| 105 |
with gr.Tab("Visual Question Answering"):
|
| 106 |
+
gr.Markdown(
|
| 107 |
+
"""
|
| 108 |
+
You can use natural-language questions to ask about the image. However, since this is a base model not fine-tuned for \
|
| 109 |
+
chat instructions, you may get better results by following a prompt format similar to the one used during training. See the \
|
| 110 |
+
examples below for details!
|
| 111 |
+
"""
|
| 112 |
+
)
|
| 113 |
with gr.Row():
|
| 114 |
with gr.Column():
|
| 115 |
image_input = gr.Image(label="Upload your Image", type="pil")
|
|
|
|
| 119 |
vqa_btn = gr.Button("Answer Visual Question")
|
| 120 |
|
| 121 |
gr.Examples(
|
| 122 |
+
[
|
| 123 |
+
["assets/vqa_example_1.png", "What's the name of this dessert, and how is it made?\n"],
|
| 124 |
+
["assets/vqa_example_2.png", "What is this flower and where is it's origin?"],
|
| 125 |
+
["assets/food.png", "Answer the following VQAv2 question based on the image.\nWhat type of foods are in the image?"],
|
| 126 |
+
["assets/jobs.png", "Answer the following DocVQA question based on the image.\nWhich is the metro in California that has a good job Outlook?"],
|
| 127 |
+
["assets/docvqa_example.png", "How many items are sold?"],
|
| 128 |
+
["assets/screen2words_ui_example.png", "What is this app about?"],
|
| 129 |
+
],
|
| 130 |
inputs = [image_input, text_input],
|
| 131 |
outputs = [vqa_output],
|
| 132 |
fn=predict,
|
|
|
|
| 144 |
captioning_btn = gr.Button("Generate Caption")
|
| 145 |
|
| 146 |
gr.Examples(
|
| 147 |
+
[["assets/captioning_example_1.png", False], ["assets/girl_hat.png", True]],
|
| 148 |
inputs = [captioning_input, detailed_captioning_checkbox],
|
| 149 |
outputs = [captioning_output],
|
| 150 |
fn=caption,
|
assets/{captioning_example_2.png → food.png}
RENAMED
|
File without changes
|
assets/girl_hat.png
ADDED
|
Git LFS Details
|
assets/jobs.png
ADDED
|
Git LFS Details
|
requirements.txt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
-
|
| 2 |
accelerate
|
| 3 |
torch==2.0.1
|
|
|
|
| 1 |
+
transformers>=4.35.0
|
| 2 |
accelerate
|
| 3 |
torch==2.0.1
|