Spaces:
Sleeping
Sleeping
| import numpy as np | |
| from safetensors import safe_open | |
| from datasets import load_dataset | |
| import torch | |
| from multilingual_clip import pt_multilingual_clip | |
| import transformers | |
| import gradio as gr | |
| def load_embeddings(file_path, key="vectors"): | |
| with safe_open(file_path, framework="numpy") as f: | |
| embeddings = f.get_tensor(key) | |
| return embeddings | |
| image_embeddings = load_embeddings("clothes_desc.safetensors") | |
| image_embeddings = image_embeddings / np.linalg.norm( | |
| image_embeddings, axis=1, keepdims=True | |
| ) | |
| ds = load_dataset("wbensvage/clothes_desc")["train"] | |
| model_name = "M-CLIP/LABSE-Vit-L-14" | |
| model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name) | |
| tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) | |
| def encode_text(texts, model, tokenizer): | |
| with torch.no_grad(): | |
| embs = model.forward(texts, tokenizer) | |
| embs = embs.detach().cpu().numpy() | |
| embs = embs / np.linalg.norm(embs, axis=1, keepdims=True) | |
| return embs | |
| def find_images(query, top_k): | |
| query_embedding = encode_text([query], model, tokenizer) | |
| similarity = np.dot(query_embedding, image_embeddings.T) | |
| top_k_indices = np.argsort(-similarity[0])[:top_k] | |
| images = [ds[int(i)]["image"] for i in top_k_indices] | |
| return images | |
| iface = gr.Interface( | |
| fn=find_images, | |
| inputs=[ | |
| gr.Textbox(lines=2, placeholder="Enter search text here (Shift + Enter to submit)", label="Query"), | |
| gr.Slider(10, 50, step=10, value=20, label="Number of images"), | |
| ], | |
| outputs=gr.Gallery(label="Search Results", columns=5, height="auto"), | |
| title="Multilingual CLIP Image Search", | |
| examples=[ | |
| ["a red dress", 20], | |
| ["a blue shirt", 20], | |
| ["la blouse rouge", 20], | |
| ["la jupe bleue", 20], | |
| ["punane kleit", 20], | |
| ["sinine särk", 20], | |
| ], | |
| ) | |
| iface.launch() | |