Spaces:
Running
Running
Use HF dataset repo as source of truth for dataset.json
Browse filesPush dataset.json to HF repo after every label/preprocess batch so
progress persists across ephemeral Space restarts. On download, pull
the JSON back and restore labels before scanning.
- Add upload_dataset_json_to_hf() and pull dataset.json in download
- Remove hf_token param (use HF_TOKEN env var)
- Reconcile stale .pt preprocessed flags on restart
- Simplify Data Source UI: remove upload files, HF token, resume accordion
- Add batch mode (max_count) for labeling and preprocessing
- Add preprocessed flag to AudioSample, scan dedup via existing_paths
- Make @spaces.GPU a no-op when running locally
- acestep/training/dataset_builder_modules/core.py +4 -0
- acestep/training/dataset_builder_modules/label_all.py +15 -4
- acestep/training/dataset_builder_modules/models.py +1 -0
- acestep/training/dataset_builder_modules/preprocess.py +25 -5
- acestep/training/dataset_builder_modules/scan.py +16 -6
- app.py +178 -95
- src/lora_trainer.py +49 -11
acestep/training/dataset_builder_modules/core.py
CHANGED
|
@@ -18,3 +18,7 @@ class CoreMixin:
|
|
| 18 |
def get_labeled_count(self) -> int:
|
| 19 |
"""Get the number of labeled samples."""
|
| 20 |
return sum(1 for s in self.samples if s.labeled)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
def get_labeled_count(self) -> int:
|
| 19 |
"""Get the number of labeled samples."""
|
| 20 |
return sum(1 for s in self.samples if s.labeled)
|
| 21 |
+
|
| 22 |
+
def get_preprocessed_count(self) -> int:
|
| 23 |
+
"""Get the number of preprocessed samples."""
|
| 24 |
+
return sum(1 for s in self.samples if s.preprocessed)
|
acestep/training/dataset_builder_modules/label_all.py
CHANGED
|
@@ -14,9 +14,14 @@ class LabelAllMixin:
|
|
| 14 |
transcribe_lyrics: bool = False,
|
| 15 |
skip_metas: bool = False,
|
| 16 |
only_unlabeled: bool = False,
|
|
|
|
| 17 |
progress_callback=None,
|
| 18 |
) -> Tuple[List[AudioSample], str]:
|
| 19 |
-
"""Label all samples in the dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
if not self.samples:
|
| 21 |
return [], "❌ No samples to label. Please scan a directory first."
|
| 22 |
|
|
@@ -30,6 +35,9 @@ class LabelAllMixin:
|
|
| 30 |
if not samples_to_label:
|
| 31 |
return self.samples, "✅ All samples already labeled"
|
| 32 |
|
|
|
|
|
|
|
|
|
|
| 33 |
success_count = 0
|
| 34 |
fail_count = 0
|
| 35 |
total = len(samples_to_label)
|
|
@@ -53,10 +61,13 @@ class LabelAllMixin:
|
|
| 53 |
else:
|
| 54 |
fail_count += 1
|
| 55 |
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
if fail_count > 0:
|
| 58 |
status_msg += f" ({fail_count} failed)"
|
| 59 |
-
|
| 60 |
-
status_msg += f" (unlabeled only, {len(self.samples)} total)"
|
| 61 |
|
| 62 |
return self.samples, status_msg
|
|
|
|
| 14 |
transcribe_lyrics: bool = False,
|
| 15 |
skip_metas: bool = False,
|
| 16 |
only_unlabeled: bool = False,
|
| 17 |
+
max_count: int = 0,
|
| 18 |
progress_callback=None,
|
| 19 |
) -> Tuple[List[AudioSample], str]:
|
| 20 |
+
"""Label all samples in the dataset.
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
max_count: When > 0, stop after labeling this many samples (batch mode).
|
| 24 |
+
"""
|
| 25 |
if not self.samples:
|
| 26 |
return [], "❌ No samples to label. Please scan a directory first."
|
| 27 |
|
|
|
|
| 35 |
if not samples_to_label:
|
| 36 |
return self.samples, "✅ All samples already labeled"
|
| 37 |
|
| 38 |
+
batch_limit = max_count if max_count > 0 else len(samples_to_label)
|
| 39 |
+
samples_to_label = samples_to_label[:batch_limit]
|
| 40 |
+
|
| 41 |
success_count = 0
|
| 42 |
fail_count = 0
|
| 43 |
total = len(samples_to_label)
|
|
|
|
| 61 |
else:
|
| 62 |
fail_count += 1
|
| 63 |
|
| 64 |
+
total_labeled = sum(1 for s in self.samples if s.labeled)
|
| 65 |
+
total_samples = len(self.samples)
|
| 66 |
+
remaining = total_samples - total_labeled
|
| 67 |
+
|
| 68 |
+
status_msg = f"✅ Labeled {success_count} this batch"
|
| 69 |
if fail_count > 0:
|
| 70 |
status_msg += f" ({fail_count} failed)"
|
| 71 |
+
status_msg += f" | {total_labeled}/{total_samples} labeled total, {remaining} remaining"
|
|
|
|
| 72 |
|
| 73 |
return self.samples, status_msg
|
acestep/training/dataset_builder_modules/models.py
CHANGED
|
@@ -31,6 +31,7 @@ class AudioSample:
|
|
| 31 |
is_instrumental: bool = True
|
| 32 |
custom_tag: str = ""
|
| 33 |
labeled: bool = False
|
|
|
|
| 34 |
prompt_override: Optional[str] = None # None=use global ratio, "caption" or "genre"
|
| 35 |
|
| 36 |
def __post_init__(self):
|
|
|
|
| 31 |
is_instrumental: bool = True
|
| 32 |
custom_tag: str = ""
|
| 33 |
labeled: bool = False
|
| 34 |
+
preprocessed: bool = False
|
| 35 |
prompt_override: Optional[str] = None # None=use global ratio, "caption" or "genre"
|
| 36 |
|
| 37 |
def __post_init__(self):
|
acestep/training/dataset_builder_modules/preprocess.py
CHANGED
|
@@ -29,16 +29,30 @@ class PreprocessMixin:
|
|
| 29 |
dit_handler,
|
| 30 |
output_dir: str,
|
| 31 |
max_duration: float = 240.0,
|
|
|
|
| 32 |
progress_callback=None,
|
| 33 |
) -> Tuple[List[str], str]:
|
| 34 |
-
"""Preprocess
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
if not self.samples:
|
| 37 |
return [], "❌ No samples to preprocess"
|
| 38 |
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
if not labeled_samples:
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
if dit_handler is None or dit_handler.model is None:
|
| 44 |
return [], "❌ Model not initialized. Please initialize the service first."
|
|
@@ -190,6 +204,7 @@ class PreprocessMixin:
|
|
| 190 |
torch.save(output_data, output_path)
|
| 191 |
debug_end_verbose_for("dataset", f"torch.save[{i}]", t0)
|
| 192 |
output_paths.append(output_path)
|
|
|
|
| 193 |
success_count += 1
|
| 194 |
|
| 195 |
except Exception as e:
|
|
@@ -202,8 +217,13 @@ class PreprocessMixin:
|
|
| 202 |
save_manifest(output_dir, self.metadata, output_paths)
|
| 203 |
debug_end_verbose_for("dataset", "save_manifest", t0)
|
| 204 |
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
if fail_count > 0:
|
| 207 |
status += f" ({fail_count} failed)"
|
|
|
|
| 208 |
|
| 209 |
return output_paths, status
|
|
|
|
| 29 |
dit_handler,
|
| 30 |
output_dir: str,
|
| 31 |
max_duration: float = 240.0,
|
| 32 |
+
max_count: int = 0,
|
| 33 |
progress_callback=None,
|
| 34 |
) -> Tuple[List[str], str]:
|
| 35 |
+
"""Preprocess labeled samples to tensor files for efficient training.
|
| 36 |
+
|
| 37 |
+
Args:
|
| 38 |
+
max_count: When > 0, stop after processing this many new samples (batch mode).
|
| 39 |
+
"""
|
| 40 |
+
debug_log_for("dataset", f"preprocess_to_tensors: output_dir='{output_dir}', max_duration={max_duration}, max_count={max_count}")
|
| 41 |
if not self.samples:
|
| 42 |
return [], "❌ No samples to preprocess"
|
| 43 |
|
| 44 |
+
# Reset stale preprocessed flags (ephemeral .pt files may be gone after restart)
|
| 45 |
+
for s in self.samples:
|
| 46 |
+
if s.preprocessed and not os.path.exists(os.path.join(output_dir, f"{s.id}.pt")):
|
| 47 |
+
s.preprocessed = False
|
| 48 |
+
|
| 49 |
+
labeled_samples = [s for s in self.samples if s.labeled and not s.preprocessed]
|
| 50 |
if not labeled_samples:
|
| 51 |
+
total_preprocessed = sum(1 for s in self.samples if s.preprocessed)
|
| 52 |
+
return [], f"✅ All labeled samples already preprocessed ({total_preprocessed} total)"
|
| 53 |
+
|
| 54 |
+
if max_count > 0:
|
| 55 |
+
labeled_samples = labeled_samples[:max_count]
|
| 56 |
|
| 57 |
if dit_handler is None or dit_handler.model is None:
|
| 58 |
return [], "❌ Model not initialized. Please initialize the service first."
|
|
|
|
| 204 |
torch.save(output_data, output_path)
|
| 205 |
debug_end_verbose_for("dataset", f"torch.save[{i}]", t0)
|
| 206 |
output_paths.append(output_path)
|
| 207 |
+
sample.preprocessed = True
|
| 208 |
success_count += 1
|
| 209 |
|
| 210 |
except Exception as e:
|
|
|
|
| 217 |
save_manifest(output_dir, self.metadata, output_paths)
|
| 218 |
debug_end_verbose_for("dataset", "save_manifest", t0)
|
| 219 |
|
| 220 |
+
total_preprocessed = sum(1 for s in self.samples if s.preprocessed)
|
| 221 |
+
total_labeled = sum(1 for s in self.samples if s.labeled)
|
| 222 |
+
remaining = total_labeled - total_preprocessed
|
| 223 |
+
|
| 224 |
+
status = f"✅ Preprocessed {success_count} new samples"
|
| 225 |
if fail_count > 0:
|
| 226 |
status += f" ({fail_count} failed)"
|
| 227 |
+
status += f" | {total_preprocessed}/{total_labeled} done, {remaining} remaining"
|
| 228 |
|
| 229 |
return output_paths, status
|
acestep/training/dataset_builder_modules/scan.py
CHANGED
|
@@ -20,7 +20,7 @@ class ScanMixin:
|
|
| 20 |
return [], f"❌ Not a directory: {directory}"
|
| 21 |
|
| 22 |
self._current_dir = directory
|
| 23 |
-
self.samples
|
| 24 |
|
| 25 |
audio_files = []
|
| 26 |
for root, _, files in os.walk(directory):
|
|
@@ -29,19 +29,27 @@ class ScanMixin:
|
|
| 29 |
if ext in SUPPORTED_AUDIO_FORMATS:
|
| 30 |
audio_files.append(os.path.join(root, file))
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
return [], (
|
| 34 |
f"❌ No audio files found in {directory}\n"
|
| 35 |
f"Supported formats: {', '.join(SUPPORTED_AUDIO_FORMATS)}"
|
| 36 |
)
|
| 37 |
|
| 38 |
-
audio_files.sort()
|
| 39 |
-
|
| 40 |
csv_metadata = load_csv_metadata(directory)
|
| 41 |
csv_count = 0
|
| 42 |
lyrics_count = 0
|
| 43 |
|
| 44 |
-
for audio_path in
|
| 45 |
try:
|
| 46 |
duration = get_audio_duration(audio_path)
|
| 47 |
lyrics_content, has_lyrics_file = load_lyrics_file(audio_path)
|
|
@@ -78,7 +86,9 @@ class ScanMixin:
|
|
| 78 |
|
| 79 |
self.metadata.num_samples = len(self.samples)
|
| 80 |
|
| 81 |
-
|
|
|
|
|
|
|
| 82 |
if lyrics_count > 0:
|
| 83 |
status += f"\n 📝 {lyrics_count} files have accompanying lyrics (.txt)"
|
| 84 |
if csv_count > 0:
|
|
|
|
| 20 |
return [], f"❌ Not a directory: {directory}"
|
| 21 |
|
| 22 |
self._current_dir = directory
|
| 23 |
+
existing_paths = {s.audio_path for s in self.samples}
|
| 24 |
|
| 25 |
audio_files = []
|
| 26 |
for root, _, files in os.walk(directory):
|
|
|
|
| 29 |
if ext in SUPPORTED_AUDIO_FORMATS:
|
| 30 |
audio_files.append(os.path.join(root, file))
|
| 31 |
|
| 32 |
+
audio_files.sort()
|
| 33 |
+
|
| 34 |
+
new_audio_files = [f for f in audio_files if f not in existing_paths]
|
| 35 |
+
|
| 36 |
+
if not new_audio_files and existing_paths:
|
| 37 |
+
return self.samples, (
|
| 38 |
+
f"✅ No new audio files in {directory} "
|
| 39 |
+
f"({len(self.samples)} samples already loaded)"
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
if not new_audio_files:
|
| 43 |
return [], (
|
| 44 |
f"❌ No audio files found in {directory}\n"
|
| 45 |
f"Supported formats: {', '.join(SUPPORTED_AUDIO_FORMATS)}"
|
| 46 |
)
|
| 47 |
|
|
|
|
|
|
|
| 48 |
csv_metadata = load_csv_metadata(directory)
|
| 49 |
csv_count = 0
|
| 50 |
lyrics_count = 0
|
| 51 |
|
| 52 |
+
for audio_path in new_audio_files:
|
| 53 |
try:
|
| 54 |
duration = get_audio_duration(audio_path)
|
| 55 |
lyrics_content, has_lyrics_file = load_lyrics_file(audio_path)
|
|
|
|
| 86 |
|
| 87 |
self.metadata.num_samples = len(self.samples)
|
| 88 |
|
| 89 |
+
new_count = len(new_audio_files)
|
| 90 |
+
total_count = len(self.samples)
|
| 91 |
+
status = f"✅ Added {new_count} new files ({total_count} total samples)"
|
| 92 |
if lyrics_count > 0:
|
| 93 |
status += f"\n 📝 {lyrics_count} files have accompanying lyrics (.txt)"
|
| 94 |
if csv_count > 0:
|
app.py
CHANGED
|
@@ -7,16 +7,24 @@ A comprehensive music generation system with three main interfaces:
|
|
| 7 |
"""
|
| 8 |
|
| 9 |
import gradio as gr
|
|
|
|
| 10 |
import torch
|
| 11 |
import numpy as np
|
| 12 |
from pathlib import Path
|
| 13 |
import json
|
| 14 |
from typing import Optional, List, Tuple
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
from src.ace_step_engine import ACEStepEngine
|
| 18 |
from src.timeline_manager import TimelineManager
|
| 19 |
-
from src.lora_trainer import download_hf_dataset
|
| 20 |
from src.audio_processor import AudioProcessor
|
| 21 |
from src.utils import setup_logging, load_config
|
| 22 |
from acestep.training.dataset_builder import DatasetBuilder
|
|
@@ -289,80 +297,99 @@ def timeline_reset(session_state: dict) -> Tuple[None, None, str, dict]:
|
|
| 289 |
DATAFRAME_HEADERS = ["#", "Filename", "Duration", "Lyrics", "Labeled", "BPM", "Key", "Caption"]
|
| 290 |
|
| 291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
def _build_review_dataframe():
|
| 293 |
"""Build editable dataframe rows from current dataset builder state."""
|
| 294 |
builder = get_dataset_builder()
|
| 295 |
return builder.get_samples_dataframe_data()
|
| 296 |
|
| 297 |
|
| 298 |
-
def
|
| 299 |
-
"""
|
| 300 |
try:
|
| 301 |
-
if not
|
| 302 |
-
return "
|
| 303 |
|
| 304 |
-
|
|
|
|
| 305 |
|
| 306 |
-
|
| 307 |
-
|
|
|
|
|
|
|
|
|
|
| 308 |
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
shutil.copy2(str(src), str(work_dir / src.name))
|
| 312 |
|
| 313 |
builder = get_dataset_builder()
|
| 314 |
-
samples, status = builder.scan_directory(str(work_dir))
|
| 315 |
-
|
| 316 |
-
training_state = training_state or {}
|
| 317 |
-
training_state["audio_dir"] = str(work_dir)
|
| 318 |
|
| 319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
return f"Error: {e}", training_state or {}
|
| 324 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
-
|
| 327 |
-
"""Download HuggingFace dataset and scan for audio files."""
|
| 328 |
-
try:
|
| 329 |
-
if not dataset_id or not dataset_id.strip():
|
| 330 |
-
return "Enter a dataset ID (e.g. pedroapfilho/lofi-tracks)", training_state
|
| 331 |
|
| 332 |
-
|
| 333 |
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
)
|
| 337 |
|
| 338 |
-
if not local_dir:
|
| 339 |
-
return f"Download failed: {dl_status}", training_state
|
| 340 |
|
|
|
|
|
|
|
|
|
|
| 341 |
builder = get_dataset_builder()
|
| 342 |
-
|
|
|
|
|
|
|
| 343 |
|
| 344 |
training_state = training_state or {}
|
| 345 |
-
training_state
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
|
| 347 |
-
return
|
| 348 |
|
| 349 |
except Exception as e:
|
| 350 |
-
logger.error(f"
|
| 351 |
-
return f"Error: {e}"
|
| 352 |
|
| 353 |
|
| 354 |
@spaces.GPU(duration=300)
|
| 355 |
-
def lora_auto_label(training_state, progress=gr.Progress()):
|
| 356 |
-
"""Auto-label
|
| 357 |
try:
|
| 358 |
builder = get_dataset_builder()
|
| 359 |
|
| 360 |
if builder.get_sample_count() == 0:
|
| 361 |
-
return [], "No samples loaded. Upload files or download a dataset first."
|
| 362 |
|
| 363 |
engine = get_ace_engine()
|
| 364 |
if not engine.is_initialized():
|
| 365 |
-
return [], "ACE-Step engine not initialized. Models may still be loading."
|
| 366 |
|
| 367 |
def progress_callback(msg):
|
| 368 |
progress(0, desc=msg)
|
|
@@ -370,14 +397,32 @@ def lora_auto_label(training_state, progress=gr.Progress()):
|
|
| 370 |
samples, status = builder.label_all_samples(
|
| 371 |
dit_handler=engine.dit_handler,
|
| 372 |
llm_handler=engine.llm_handler,
|
|
|
|
|
|
|
| 373 |
progress_callback=progress_callback,
|
| 374 |
)
|
| 375 |
|
| 376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
|
| 378 |
except Exception as e:
|
| 379 |
logger.error(f"Auto-label failed: {e}")
|
| 380 |
-
return [], f"Error: {e}"
|
| 381 |
|
| 382 |
|
| 383 |
def lora_save_edits(df_data, training_state):
|
|
@@ -385,11 +430,22 @@ def lora_save_edits(df_data, training_state):
|
|
| 385 |
try:
|
| 386 |
builder = get_dataset_builder()
|
| 387 |
|
| 388 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 389 |
return "No data to save"
|
| 390 |
|
| 391 |
updated = 0
|
| 392 |
-
for row in
|
| 393 |
idx = int(row[0])
|
| 394 |
updates = {}
|
| 395 |
|
|
@@ -421,17 +477,17 @@ def lora_save_edits(df_data, training_state):
|
|
| 421 |
|
| 422 |
|
| 423 |
@spaces.GPU(duration=300)
|
| 424 |
-
def lora_preprocess(training_state, progress=gr.Progress()):
|
| 425 |
-
"""Preprocess labeled samples to training tensors."""
|
| 426 |
try:
|
| 427 |
builder = get_dataset_builder()
|
| 428 |
|
| 429 |
if builder.get_labeled_count() == 0:
|
| 430 |
-
return "No labeled samples. Run auto-label first."
|
| 431 |
|
| 432 |
engine = get_ace_engine()
|
| 433 |
if not engine.is_initialized():
|
| 434 |
-
return "ACE-Step engine not initialized."
|
| 435 |
|
| 436 |
tensor_dir = str(Path("lora_training") / "tensors")
|
| 437 |
|
|
@@ -441,17 +497,34 @@ def lora_preprocess(training_state, progress=gr.Progress()):
|
|
| 441 |
output_paths, status = builder.preprocess_to_tensors(
|
| 442 |
dit_handler=engine.dit_handler,
|
| 443 |
output_dir=tensor_dir,
|
|
|
|
| 444 |
progress_callback=progress_callback,
|
| 445 |
)
|
| 446 |
|
| 447 |
training_state = training_state or {}
|
| 448 |
training_state["tensor_dir"] = tensor_dir
|
| 449 |
|
| 450 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 451 |
|
| 452 |
except Exception as e:
|
| 453 |
logger.error(f"Preprocess failed: {e}")
|
| 454 |
-
return f"Error: {e}"
|
| 455 |
|
| 456 |
|
| 457 |
@spaces.GPU(duration=600)
|
|
@@ -740,41 +813,38 @@ def create_ui():
|
|
| 740 |
|
| 741 |
training_state = gr.State(value={})
|
| 742 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 743 |
with gr.Tabs():
|
| 744 |
|
| 745 |
# ---------- Sub-tab 1: Data Source ----------
|
| 746 |
with gr.Tab("1. Data Source"):
|
| 747 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
| 748 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 749 |
with gr.Row():
|
| 750 |
-
|
| 751 |
-
|
| 752 |
-
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
gr.Markdown("#### HuggingFace Dataset")
|
| 763 |
-
lora_hf_id = gr.Textbox(
|
| 764 |
-
label="Dataset ID",
|
| 765 |
-
placeholder="pedroapfilho/lofi-tracks",
|
| 766 |
-
)
|
| 767 |
-
lora_hf_token = gr.Textbox(
|
| 768 |
-
label="HF Token (optional, for private repos)",
|
| 769 |
-
type="password",
|
| 770 |
-
)
|
| 771 |
-
lora_hf_max = gr.Slider(
|
| 772 |
-
minimum=1, maximum=500, value=50, step=1,
|
| 773 |
-
label="Max files",
|
| 774 |
-
)
|
| 775 |
-
lora_hf_btn = gr.Button(
|
| 776 |
-
"Download & Scan", variant="primary"
|
| 777 |
-
)
|
| 778 |
|
| 779 |
lora_source_status = gr.Textbox(
|
| 780 |
label="Status", lines=2, interactive=False
|
|
@@ -786,11 +856,16 @@ def create_ui():
|
|
| 786 |
"Auto-label samples using the LLM, then review and edit metadata."
|
| 787 |
)
|
| 788 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 789 |
lora_label_btn = gr.Button(
|
| 790 |
-
"
|
|
|
|
| 791 |
)
|
| 792 |
lora_label_status = gr.Textbox(
|
| 793 |
-
label="Label Status", lines=
|
| 794 |
)
|
| 795 |
|
| 796 |
lora_review_df = gr.Dataframe(
|
|
@@ -800,7 +875,11 @@ def create_ui():
|
|
| 800 |
wrap=True,
|
| 801 |
)
|
| 802 |
|
| 803 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 804 |
lora_save_status = gr.Textbox(
|
| 805 |
label="Save Status", interactive=False
|
| 806 |
)
|
|
@@ -811,8 +890,12 @@ def create_ui():
|
|
| 811 |
"Encode audio through VAE and text encoders to create training tensors."
|
| 812 |
)
|
| 813 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 814 |
lora_preprocess_btn = gr.Button(
|
| 815 |
-
"Preprocess
|
| 816 |
)
|
| 817 |
lora_preprocess_status = gr.Textbox(
|
| 818 |
label="Preprocess Status", lines=3, interactive=False
|
|
@@ -895,23 +978,17 @@ def create_ui():
|
|
| 895 |
# ---------- Event handlers ----------
|
| 896 |
|
| 897 |
# Data Source
|
| 898 |
-
lora_upload_btn.click(
|
| 899 |
-
fn=lora_upload_and_scan,
|
| 900 |
-
inputs=[lora_files, training_state],
|
| 901 |
-
outputs=[lora_source_status, training_state],
|
| 902 |
-
)
|
| 903 |
-
|
| 904 |
lora_hf_btn.click(
|
| 905 |
fn=lora_download_hf,
|
| 906 |
-
inputs=[lora_hf_id,
|
| 907 |
-
outputs=[lora_source_status, training_state],
|
| 908 |
)
|
| 909 |
|
| 910 |
# Label & Review
|
| 911 |
lora_label_btn.click(
|
| 912 |
fn=lora_auto_label,
|
| 913 |
-
inputs=[training_state],
|
| 914 |
-
outputs=[lora_review_df, lora_label_status],
|
| 915 |
)
|
| 916 |
|
| 917 |
lora_save_btn.click(
|
|
@@ -920,11 +997,17 @@ def create_ui():
|
|
| 920 |
outputs=[lora_save_status],
|
| 921 |
)
|
| 922 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 923 |
# Preprocess
|
| 924 |
lora_preprocess_btn.click(
|
| 925 |
fn=lora_preprocess,
|
| 926 |
-
inputs=[training_state],
|
| 927 |
-
outputs=[lora_preprocess_status],
|
| 928 |
)
|
| 929 |
|
| 930 |
# Train
|
|
|
|
| 7 |
"""
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
+
import pandas as pd
|
| 11 |
import torch
|
| 12 |
import numpy as np
|
| 13 |
from pathlib import Path
|
| 14 |
import json
|
| 15 |
from typing import Optional, List, Tuple
|
| 16 |
+
try:
|
| 17 |
+
import spaces
|
| 18 |
+
except ImportError:
|
| 19 |
+
# Local dev — make @spaces.GPU a no-op
|
| 20 |
+
class _Spaces:
|
| 21 |
+
def GPU(self, fn=None, **kwargs):
|
| 22 |
+
return fn if fn else lambda f: f
|
| 23 |
+
spaces = _Spaces()
|
| 24 |
|
| 25 |
from src.ace_step_engine import ACEStepEngine
|
| 26 |
from src.timeline_manager import TimelineManager
|
| 27 |
+
from src.lora_trainer import download_hf_dataset, upload_dataset_json_to_hf
|
| 28 |
from src.audio_processor import AudioProcessor
|
| 29 |
from src.utils import setup_logging, load_config
|
| 30 |
from acestep.training.dataset_builder import DatasetBuilder
|
|
|
|
| 297 |
DATAFRAME_HEADERS = ["#", "Filename", "Duration", "Lyrics", "Labeled", "BPM", "Key", "Caption"]
|
| 298 |
|
| 299 |
|
| 300 |
+
def _build_progress_summary():
|
| 301 |
+
"""Build a one-line progress summary from current dataset builder state."""
|
| 302 |
+
builder = get_dataset_builder()
|
| 303 |
+
total = builder.get_sample_count()
|
| 304 |
+
labeled = builder.get_labeled_count()
|
| 305 |
+
preprocessed = builder.get_preprocessed_count()
|
| 306 |
+
remaining = total - labeled
|
| 307 |
+
return f"Total: {total} | Labeled: {labeled} | Preprocessed: {preprocessed} | Remaining: {remaining}"
|
| 308 |
+
|
| 309 |
+
|
| 310 |
def _build_review_dataframe():
|
| 311 |
"""Build editable dataframe rows from current dataset builder state."""
|
| 312 |
builder = get_dataset_builder()
|
| 313 |
return builder.get_samples_dataframe_data()
|
| 314 |
|
| 315 |
|
| 316 |
+
def lora_download_hf(dataset_id, max_files, hf_offset, training_state):
|
| 317 |
+
"""Download HuggingFace dataset batch, restore labels from HF repo, and scan."""
|
| 318 |
try:
|
| 319 |
+
if not dataset_id or not dataset_id.strip():
|
| 320 |
+
return "Enter a dataset ID (e.g. username/dataset-name)", training_state, int(hf_offset or 0), _build_progress_summary()
|
| 321 |
|
| 322 |
+
offset_val = int(hf_offset or 0)
|
| 323 |
+
max_files_val = int(max_files)
|
| 324 |
|
| 325 |
+
local_dir, dl_status = download_hf_dataset(
|
| 326 |
+
dataset_id.strip(),
|
| 327 |
+
max_files=max_files_val,
|
| 328 |
+
offset=offset_val,
|
| 329 |
+
)
|
| 330 |
|
| 331 |
+
if not local_dir:
|
| 332 |
+
return f"Download failed: {dl_status}", training_state, offset_val, _build_progress_summary()
|
|
|
|
| 333 |
|
| 334 |
builder = get_dataset_builder()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
+
# Restore labels/flags from dataset.json pulled from HF repo
|
| 337 |
+
dataset_json_path = str(Path(local_dir) / "dataset.json")
|
| 338 |
+
if Path(dataset_json_path).exists():
|
| 339 |
+
builder.load_dataset(dataset_json_path)
|
| 340 |
+
dl_status += " | Restored labels from HF repo"
|
| 341 |
|
| 342 |
+
# Scan directory — skips already-tracked files via existing_paths check
|
| 343 |
+
samples, scan_status = builder.scan_directory(local_dir)
|
|
|
|
| 344 |
|
| 345 |
+
training_state = training_state or {}
|
| 346 |
+
training_state["audio_dir"] = local_dir
|
| 347 |
+
training_state["dataset_id"] = dataset_id.strip()
|
| 348 |
+
training_state["dataset_path"] = dataset_json_path
|
| 349 |
|
| 350 |
+
next_offset = offset_val + max_files_val
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
|
| 352 |
+
return f"{dl_status} | {scan_status}", training_state, next_offset, _build_progress_summary()
|
| 353 |
|
| 354 |
+
except Exception as e:
|
| 355 |
+
logger.error(f"HF download failed: {e}")
|
| 356 |
+
return f"Error: {e}", training_state or {}, int(hf_offset or 0), _build_progress_summary()
|
| 357 |
|
|
|
|
|
|
|
| 358 |
|
| 359 |
+
def lora_save_dataset_to_json(training_state):
|
| 360 |
+
"""Explicitly save the current dataset to JSON."""
|
| 361 |
+
try:
|
| 362 |
builder = get_dataset_builder()
|
| 363 |
+
|
| 364 |
+
if builder.get_sample_count() == 0:
|
| 365 |
+
return "No samples to save"
|
| 366 |
|
| 367 |
training_state = training_state or {}
|
| 368 |
+
dataset_path = training_state.get("dataset_path")
|
| 369 |
+
if not dataset_path:
|
| 370 |
+
audio_dir = training_state.get("audio_dir", "lora_training")
|
| 371 |
+
dataset_path = str(Path(audio_dir) / "dataset.json")
|
| 372 |
+
training_state["dataset_path"] = dataset_path
|
| 373 |
|
| 374 |
+
return builder.save_dataset(dataset_path)
|
| 375 |
|
| 376 |
except Exception as e:
|
| 377 |
+
logger.error(f"Save dataset failed: {e}")
|
| 378 |
+
return f"Error: {e}"
|
| 379 |
|
| 380 |
|
| 381 |
@spaces.GPU(duration=300)
|
| 382 |
+
def lora_auto_label(label_batch_size, training_state, progress=gr.Progress()):
|
| 383 |
+
"""Auto-label unlabeled samples in batches using LLM analysis, then auto-save."""
|
| 384 |
try:
|
| 385 |
builder = get_dataset_builder()
|
| 386 |
|
| 387 |
if builder.get_sample_count() == 0:
|
| 388 |
+
return [], "No samples loaded. Upload files or download a dataset first.", training_state, _build_progress_summary()
|
| 389 |
|
| 390 |
engine = get_ace_engine()
|
| 391 |
if not engine.is_initialized():
|
| 392 |
+
return [], "ACE-Step engine not initialized. Models may still be loading.", training_state, _build_progress_summary()
|
| 393 |
|
| 394 |
def progress_callback(msg):
|
| 395 |
progress(0, desc=msg)
|
|
|
|
| 397 |
samples, status = builder.label_all_samples(
|
| 398 |
dit_handler=engine.dit_handler,
|
| 399 |
llm_handler=engine.llm_handler,
|
| 400 |
+
only_unlabeled=True,
|
| 401 |
+
max_count=int(label_batch_size),
|
| 402 |
progress_callback=progress_callback,
|
| 403 |
)
|
| 404 |
|
| 405 |
+
training_state = training_state or {}
|
| 406 |
+
dataset_path = training_state.get("dataset_path")
|
| 407 |
+
if not dataset_path:
|
| 408 |
+
audio_dir = training_state.get("audio_dir", "lora_training")
|
| 409 |
+
dataset_path = str(Path(audio_dir) / "dataset.json")
|
| 410 |
+
training_state["dataset_path"] = dataset_path
|
| 411 |
+
|
| 412 |
+
save_status = builder.save_dataset(dataset_path)
|
| 413 |
+
status += f"\n{save_status}"
|
| 414 |
+
|
| 415 |
+
# Sync to HF repo so labels persist across sessions
|
| 416 |
+
dataset_id = training_state.get("dataset_id")
|
| 417 |
+
if dataset_id:
|
| 418 |
+
hf_status = upload_dataset_json_to_hf(dataset_id, dataset_path)
|
| 419 |
+
status += f"\n{hf_status}"
|
| 420 |
+
|
| 421 |
+
return _build_review_dataframe(), status, training_state, _build_progress_summary()
|
| 422 |
|
| 423 |
except Exception as e:
|
| 424 |
logger.error(f"Auto-label failed: {e}")
|
| 425 |
+
return [], f"Error: {e}", training_state or {}, _build_progress_summary()
|
| 426 |
|
| 427 |
|
| 428 |
def lora_save_edits(df_data, training_state):
|
|
|
|
| 430 |
try:
|
| 431 |
builder = get_dataset_builder()
|
| 432 |
|
| 433 |
+
if df_data is None:
|
| 434 |
+
return "No data to save"
|
| 435 |
+
|
| 436 |
+
if isinstance(df_data, pd.DataFrame):
|
| 437 |
+
if df_data.empty:
|
| 438 |
+
return "No data to save"
|
| 439 |
+
rows = df_data.values.tolist()
|
| 440 |
+
elif isinstance(df_data, list):
|
| 441 |
+
if len(df_data) == 0:
|
| 442 |
+
return "No data to save"
|
| 443 |
+
rows = df_data
|
| 444 |
+
else:
|
| 445 |
return "No data to save"
|
| 446 |
|
| 447 |
updated = 0
|
| 448 |
+
for row in rows:
|
| 449 |
idx = int(row[0])
|
| 450 |
updates = {}
|
| 451 |
|
|
|
|
| 477 |
|
| 478 |
|
| 479 |
@spaces.GPU(duration=300)
|
| 480 |
+
def lora_preprocess(preprocess_batch_size, training_state, progress=gr.Progress()):
|
| 481 |
+
"""Preprocess labeled samples to training tensors in batches."""
|
| 482 |
try:
|
| 483 |
builder = get_dataset_builder()
|
| 484 |
|
| 485 |
if builder.get_labeled_count() == 0:
|
| 486 |
+
return "No labeled samples. Run auto-label first.", _build_progress_summary()
|
| 487 |
|
| 488 |
engine = get_ace_engine()
|
| 489 |
if not engine.is_initialized():
|
| 490 |
+
return "ACE-Step engine not initialized.", _build_progress_summary()
|
| 491 |
|
| 492 |
tensor_dir = str(Path("lora_training") / "tensors")
|
| 493 |
|
|
|
|
| 497 |
output_paths, status = builder.preprocess_to_tensors(
|
| 498 |
dit_handler=engine.dit_handler,
|
| 499 |
output_dir=tensor_dir,
|
| 500 |
+
max_count=int(preprocess_batch_size),
|
| 501 |
progress_callback=progress_callback,
|
| 502 |
)
|
| 503 |
|
| 504 |
training_state = training_state or {}
|
| 505 |
training_state["tensor_dir"] = tensor_dir
|
| 506 |
|
| 507 |
+
# Auto-save so preprocessed flags persist across sessions
|
| 508 |
+
dataset_path = training_state.get("dataset_path")
|
| 509 |
+
if not dataset_path:
|
| 510 |
+
audio_dir = training_state.get("audio_dir", "lora_training")
|
| 511 |
+
dataset_path = str(Path(audio_dir) / "dataset.json")
|
| 512 |
+
training_state["dataset_path"] = dataset_path
|
| 513 |
+
|
| 514 |
+
save_status = builder.save_dataset(dataset_path)
|
| 515 |
+
status += f"\n{save_status}"
|
| 516 |
+
|
| 517 |
+
# Sync to HF repo so preprocessed flags persist across sessions
|
| 518 |
+
dataset_id = training_state.get("dataset_id")
|
| 519 |
+
if dataset_id:
|
| 520 |
+
hf_status = upload_dataset_json_to_hf(dataset_id, dataset_path)
|
| 521 |
+
status += f"\n{hf_status}"
|
| 522 |
+
|
| 523 |
+
return status, _build_progress_summary()
|
| 524 |
|
| 525 |
except Exception as e:
|
| 526 |
logger.error(f"Preprocess failed: {e}")
|
| 527 |
+
return f"Error: {e}", _build_progress_summary()
|
| 528 |
|
| 529 |
|
| 530 |
@spaces.GPU(duration=600)
|
|
|
|
| 813 |
|
| 814 |
training_state = gr.State(value={})
|
| 815 |
|
| 816 |
+
lora_progress = gr.Textbox(
|
| 817 |
+
label="Progress",
|
| 818 |
+
value="Total: 0 | Labeled: 0 | Preprocessed: 0 | Remaining: 0",
|
| 819 |
+
interactive=False,
|
| 820 |
+
)
|
| 821 |
+
|
| 822 |
with gr.Tabs():
|
| 823 |
|
| 824 |
# ---------- Sub-tab 1: Data Source ----------
|
| 825 |
with gr.Tab("1. Data Source"):
|
| 826 |
+
gr.Markdown(
|
| 827 |
+
"Download audio from a HuggingFace dataset repo. "
|
| 828 |
+
"Labels and progress are synced back to the repo automatically."
|
| 829 |
+
)
|
| 830 |
|
| 831 |
+
lora_hf_id = gr.Textbox(
|
| 832 |
+
label="Dataset ID",
|
| 833 |
+
placeholder="username/dataset-name",
|
| 834 |
+
)
|
| 835 |
with gr.Row():
|
| 836 |
+
lora_hf_max = gr.Slider(
|
| 837 |
+
minimum=1, maximum=500, value=50, step=1,
|
| 838 |
+
label="Batch size",
|
| 839 |
+
)
|
| 840 |
+
lora_hf_offset = gr.Number(
|
| 841 |
+
label="Offset (auto-increments)",
|
| 842 |
+
value=0,
|
| 843 |
+
precision=0,
|
| 844 |
+
)
|
| 845 |
+
lora_hf_btn = gr.Button(
|
| 846 |
+
"Download Batch & Scan", variant="primary"
|
| 847 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 848 |
|
| 849 |
lora_source_status = gr.Textbox(
|
| 850 |
label="Status", lines=2, interactive=False
|
|
|
|
| 856 |
"Auto-label samples using the LLM, then review and edit metadata."
|
| 857 |
)
|
| 858 |
|
| 859 |
+
lora_label_batch_size = gr.Slider(
|
| 860 |
+
minimum=1, maximum=500, value=50, step=1,
|
| 861 |
+
label="Label batch size (samples per run)",
|
| 862 |
+
)
|
| 863 |
lora_label_btn = gr.Button(
|
| 864 |
+
"Label Batch (+ auto-save)",
|
| 865 |
+
variant="primary",
|
| 866 |
)
|
| 867 |
lora_label_status = gr.Textbox(
|
| 868 |
+
label="Label Status", lines=3, interactive=False
|
| 869 |
)
|
| 870 |
|
| 871 |
lora_review_df = gr.Dataframe(
|
|
|
|
| 875 |
wrap=True,
|
| 876 |
)
|
| 877 |
|
| 878 |
+
with gr.Row():
|
| 879 |
+
lora_save_btn = gr.Button("Save Edits")
|
| 880 |
+
lora_save_dataset_btn = gr.Button(
|
| 881 |
+
"Save Dataset to JSON", variant="secondary"
|
| 882 |
+
)
|
| 883 |
lora_save_status = gr.Textbox(
|
| 884 |
label="Save Status", interactive=False
|
| 885 |
)
|
|
|
|
| 890 |
"Encode audio through VAE and text encoders to create training tensors."
|
| 891 |
)
|
| 892 |
|
| 893 |
+
lora_preprocess_batch_size = gr.Slider(
|
| 894 |
+
minimum=1, maximum=500, value=50, step=1,
|
| 895 |
+
label="Preprocess batch size (samples per run)",
|
| 896 |
+
)
|
| 897 |
lora_preprocess_btn = gr.Button(
|
| 898 |
+
"Preprocess Batch (+ auto-save)", variant="primary"
|
| 899 |
)
|
| 900 |
lora_preprocess_status = gr.Textbox(
|
| 901 |
label="Preprocess Status", lines=3, interactive=False
|
|
|
|
| 978 |
# ---------- Event handlers ----------
|
| 979 |
|
| 980 |
# Data Source
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 981 |
lora_hf_btn.click(
|
| 982 |
fn=lora_download_hf,
|
| 983 |
+
inputs=[lora_hf_id, lora_hf_max, lora_hf_offset, training_state],
|
| 984 |
+
outputs=[lora_source_status, training_state, lora_hf_offset, lora_progress],
|
| 985 |
)
|
| 986 |
|
| 987 |
# Label & Review
|
| 988 |
lora_label_btn.click(
|
| 989 |
fn=lora_auto_label,
|
| 990 |
+
inputs=[lora_label_batch_size, training_state],
|
| 991 |
+
outputs=[lora_review_df, lora_label_status, training_state, lora_progress],
|
| 992 |
)
|
| 993 |
|
| 994 |
lora_save_btn.click(
|
|
|
|
| 997 |
outputs=[lora_save_status],
|
| 998 |
)
|
| 999 |
|
| 1000 |
+
lora_save_dataset_btn.click(
|
| 1001 |
+
fn=lora_save_dataset_to_json,
|
| 1002 |
+
inputs=[training_state],
|
| 1003 |
+
outputs=[lora_save_status],
|
| 1004 |
+
)
|
| 1005 |
+
|
| 1006 |
# Preprocess
|
| 1007 |
lora_preprocess_btn.click(
|
| 1008 |
fn=lora_preprocess,
|
| 1009 |
+
inputs=[lora_preprocess_batch_size, training_state],
|
| 1010 |
+
outputs=[lora_preprocess_status, lora_progress],
|
| 1011 |
)
|
| 1012 |
|
| 1013 |
# Train
|
src/lora_trainer.py
CHANGED
|
@@ -6,8 +6,10 @@ The actual training pipeline lives in acestep/training/.
|
|
| 6 |
"""
|
| 7 |
|
| 8 |
import logging
|
|
|
|
|
|
|
| 9 |
from pathlib import Path
|
| 10 |
-
from typing import
|
| 11 |
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
|
@@ -17,18 +19,15 @@ AUDIO_SUFFIXES = {".wav", ".mp3", ".flac", ".ogg", ".opus"}
|
|
| 17 |
def download_hf_dataset(
|
| 18 |
dataset_id: str,
|
| 19 |
max_files: int = 50,
|
| 20 |
-
|
| 21 |
) -> Tuple[str, str]:
|
| 22 |
"""
|
| 23 |
Download a subset of audio files from a HuggingFace dataset repo.
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
|
| 28 |
-
|
| 29 |
-
dataset_id: HuggingFace dataset repo ID (e.g. "pedroapfilho/lofi-tracks")
|
| 30 |
-
max_files: Maximum number of audio files to download
|
| 31 |
-
hf_token: Optional HuggingFace token for private repos
|
| 32 |
|
| 33 |
Returns:
|
| 34 |
Tuple of (output_dir, status_message)
|
|
@@ -37,7 +36,7 @@ def download_hf_dataset(
|
|
| 37 |
from huggingface_hub import HfApi, hf_hub_download
|
| 38 |
|
| 39 |
api = HfApi()
|
| 40 |
-
token =
|
| 41 |
|
| 42 |
logger.info(f"Listing files in '{dataset_id}'...")
|
| 43 |
|
|
@@ -51,7 +50,7 @@ def download_hf_dataset(
|
|
| 51 |
]
|
| 52 |
|
| 53 |
total_available = len(all_files)
|
| 54 |
-
selected = all_files[:max_files]
|
| 55 |
|
| 56 |
if not selected:
|
| 57 |
return "", f"No audio files found in {dataset_id}"
|
|
@@ -76,9 +75,23 @@ def download_hf_dataset(
|
|
| 76 |
if not dest.exists():
|
| 77 |
dest.symlink_to(cached_path)
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
status = (
|
| 80 |
f"Downloaded {len(selected)} of {total_available} "
|
| 81 |
-
f"audio files from {dataset_id}"
|
| 82 |
)
|
| 83 |
logger.info(status)
|
| 84 |
return str(output_dir), status
|
|
@@ -91,3 +104,28 @@ def download_hf_dataset(
|
|
| 91 |
msg = f"Failed to download dataset: {e}"
|
| 92 |
logger.error(msg)
|
| 93 |
return "", msg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
"""
|
| 7 |
|
| 8 |
import logging
|
| 9 |
+
import os
|
| 10 |
+
import shutil
|
| 11 |
from pathlib import Path
|
| 12 |
+
from typing import Tuple
|
| 13 |
|
| 14 |
logger = logging.getLogger(__name__)
|
| 15 |
|
|
|
|
| 19 |
def download_hf_dataset(
|
| 20 |
dataset_id: str,
|
| 21 |
max_files: int = 50,
|
| 22 |
+
offset: int = 0,
|
| 23 |
) -> Tuple[str, str]:
|
| 24 |
"""
|
| 25 |
Download a subset of audio files from a HuggingFace dataset repo.
|
| 26 |
|
| 27 |
+
Also pulls dataset.json from the repo if it exists (restoring labels
|
| 28 |
+
and preprocessed flags from a previous session).
|
| 29 |
|
| 30 |
+
Uses HF_TOKEN env var for authentication.
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
Returns:
|
| 33 |
Tuple of (output_dir, status_message)
|
|
|
|
| 36 |
from huggingface_hub import HfApi, hf_hub_download
|
| 37 |
|
| 38 |
api = HfApi()
|
| 39 |
+
token = os.environ.get("HF_TOKEN")
|
| 40 |
|
| 41 |
logger.info(f"Listing files in '{dataset_id}'...")
|
| 42 |
|
|
|
|
| 50 |
]
|
| 51 |
|
| 52 |
total_available = len(all_files)
|
| 53 |
+
selected = all_files[offset:offset + max_files]
|
| 54 |
|
| 55 |
if not selected:
|
| 56 |
return "", f"No audio files found in {dataset_id}"
|
|
|
|
| 75 |
if not dest.exists():
|
| 76 |
dest.symlink_to(cached_path)
|
| 77 |
|
| 78 |
+
# Pull dataset.json from repo if it exists (restores previous session state)
|
| 79 |
+
try:
|
| 80 |
+
cached_json = hf_hub_download(
|
| 81 |
+
repo_id=dataset_id,
|
| 82 |
+
filename="dataset.json",
|
| 83 |
+
repo_type="dataset",
|
| 84 |
+
token=token,
|
| 85 |
+
)
|
| 86 |
+
dest_json = output_dir / "dataset.json"
|
| 87 |
+
shutil.copy2(cached_json, str(dest_json))
|
| 88 |
+
logger.info("Pulled dataset.json from HF repo")
|
| 89 |
+
except Exception:
|
| 90 |
+
logger.info("No dataset.json in HF repo (first session)")
|
| 91 |
+
|
| 92 |
status = (
|
| 93 |
f"Downloaded {len(selected)} of {total_available} "
|
| 94 |
+
f"audio files from {dataset_id} (offset {offset})"
|
| 95 |
)
|
| 96 |
logger.info(status)
|
| 97 |
return str(output_dir), status
|
|
|
|
| 104 |
msg = f"Failed to download dataset: {e}"
|
| 105 |
logger.error(msg)
|
| 106 |
return "", msg
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def upload_dataset_json_to_hf(dataset_id: str, json_path: str) -> str:
|
| 110 |
+
"""Push dataset.json to the HF dataset repo for persistence across sessions."""
|
| 111 |
+
try:
|
| 112 |
+
from huggingface_hub import HfApi
|
| 113 |
+
|
| 114 |
+
token = os.environ.get("HF_TOKEN")
|
| 115 |
+
if not token:
|
| 116 |
+
return "HF_TOKEN not set — skipped HF sync"
|
| 117 |
+
|
| 118 |
+
api = HfApi()
|
| 119 |
+
api.upload_file(
|
| 120 |
+
path_or_fileobj=json_path,
|
| 121 |
+
path_in_repo="dataset.json",
|
| 122 |
+
repo_id=dataset_id,
|
| 123 |
+
repo_type="dataset",
|
| 124 |
+
token=token,
|
| 125 |
+
)
|
| 126 |
+
return f"Synced dataset.json to {dataset_id}"
|
| 127 |
+
|
| 128 |
+
except Exception as e:
|
| 129 |
+
msg = f"HF sync failed: {e}"
|
| 130 |
+
logger.error(msg)
|
| 131 |
+
return msg
|