Spaces:
Runtime error
Runtime error
BioMistral_gradio
/
llama-cpp-python
/vendor
/llama.cpp
/examples
/save-load-state
/save-load-state.cpp
| int main(int argc, char ** argv) { | |
| gpt_params params; | |
| params.prompt = "The quick brown fox"; | |
| if (!gpt_params_parse(argc, argv, params)) { | |
| return 1; | |
| } | |
| print_build_info(); | |
| if (params.n_predict < 0) { | |
| params.n_predict = 16; | |
| } | |
| auto n_past = 0; | |
| std::string result0; | |
| std::string result1; | |
| std::string result2; | |
| // init | |
| llama_model * model; | |
| llama_context * ctx; | |
| std::tie(model, ctx) = llama_init_from_gpt_params(params); | |
| if (model == nullptr || ctx == nullptr) { | |
| fprintf(stderr, "%s : failed to init\n", __func__); | |
| return 1; | |
| } | |
| // tokenize prompt | |
| auto tokens = llama_tokenize(ctx, params.prompt, true); | |
| // evaluate prompt | |
| llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), n_past, 0)); | |
| n_past += tokens.size(); | |
| // save state (rng, logits, embedding and kv_cache) to file | |
| { | |
| std::vector<uint8_t> state_mem(llama_state_get_size(ctx)); | |
| const size_t written = llama_state_get_data(ctx, state_mem.data()); | |
| FILE *fp_write = fopen("dump_state.bin", "wb"); | |
| fwrite(state_mem.data(), 1, written, fp_write); | |
| fclose(fp_write); | |
| fprintf(stderr, "%s : serialized state into %zd out of a maximum of %zd bytes\n", __func__, written, state_mem.size()); | |
| } | |
| // save state (last tokens) | |
| const auto n_past_saved = n_past; | |
| // first run | |
| printf("\nfirst run: %s", params.prompt.c_str()); | |
| for (auto i = 0; i < params.n_predict; i++) { | |
| auto * logits = llama_get_logits(ctx); | |
| auto n_vocab = llama_n_vocab(model); | |
| std::vector<llama_token_data> candidates; | |
| candidates.reserve(n_vocab); | |
| for (llama_token token_id = 0; token_id < n_vocab; token_id++) { | |
| candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); | |
| } | |
| llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
| auto next_token = llama_sample_token(ctx, &candidates_p); | |
| auto next_token_str = llama_token_to_piece(ctx, next_token); | |
| printf("%s", next_token_str.c_str()); | |
| result0 += next_token_str; | |
| if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) { | |
| fprintf(stderr, "\n%s : failed to evaluate\n", __func__); | |
| llama_free(ctx); | |
| llama_free_model(model); | |
| return 1; | |
| } | |
| n_past += 1; | |
| } | |
| printf("\n\n"); | |
| // free old context | |
| llama_free(ctx); | |
| // make new context | |
| auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params)); | |
| printf("\nsecond run: %s", params.prompt.c_str()); | |
| // load state (rng, logits, embedding and kv_cache) from file | |
| { | |
| std::vector<uint8_t> state_mem(llama_state_get_size(ctx2)); | |
| FILE * fp_read = fopen("dump_state.bin", "rb"); | |
| const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read); | |
| fclose(fp_read); | |
| if (read != llama_state_set_data(ctx2, state_mem.data())) { | |
| fprintf(stderr, "\n%s : failed to read state\n", __func__); | |
| llama_free(ctx2); | |
| llama_free_model(model); | |
| return 1; | |
| } | |
| fprintf(stderr, "%s : deserialized state from %zd out of a maximum of %zd bytes\n", __func__, read, state_mem.size()); | |
| } | |
| // restore state (last tokens) | |
| n_past = n_past_saved; | |
| // second run | |
| for (auto i = 0; i < params.n_predict; i++) { | |
| auto * logits = llama_get_logits(ctx2); | |
| auto n_vocab = llama_n_vocab(model); | |
| std::vector<llama_token_data> candidates; | |
| candidates.reserve(n_vocab); | |
| for (llama_token token_id = 0; token_id < n_vocab; token_id++) { | |
| candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); | |
| } | |
| llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
| auto next_token = llama_sample_token(ctx2, &candidates_p); | |
| auto next_token_str = llama_token_to_piece(ctx2, next_token); | |
| printf("%s", next_token_str.c_str()); | |
| result1 += next_token_str; | |
| if (llama_decode(ctx2, llama_batch_get_one(&next_token, 1, n_past, 0))) { | |
| fprintf(stderr, "\n%s : failed to evaluate\n", __func__); | |
| llama_free(ctx2); | |
| llama_free_model(model); | |
| return 1; | |
| } | |
| n_past += 1; | |
| } | |
| printf("\n\n"); | |
| llama_free(ctx2); | |
| if (result0 != result1) { | |
| fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__); | |
| return 1; | |
| } | |
| // make new context | |
| auto* ctx3 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params)); | |
| printf("\nsingle seq run: %s", params.prompt.c_str()); | |
| // load state (rng, logits, embedding and kv_cache) from file | |
| { | |
| std::vector<uint8_t> state_mem(llama_state_get_size(ctx3)); | |
| FILE * fp_read = fopen("dump_state.bin", "rb"); | |
| const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read); | |
| fclose(fp_read); | |
| if (read != llama_state_set_data(ctx3, state_mem.data())) { | |
| fprintf(stderr, "\n%s : failed to read state\n", __func__); | |
| llama_free(ctx3); | |
| llama_free_model(model); | |
| return 1; | |
| } | |
| fprintf(stderr, "%s : deserialized state from %zd out of a maximum of %zd bytes\n", __func__, read, state_mem.size()); | |
| } | |
| // restore state (last tokens) | |
| n_past = n_past_saved; | |
| // save seq 0 and load into seq 1 | |
| { | |
| // save kv of seq 0 | |
| std::vector<uint8_t> seq_store(llama_state_seq_get_size(ctx3, 0)); | |
| const size_t ncopy = llama_state_seq_get_data(ctx3, seq_store.data(), 0); | |
| if (ncopy != seq_store.size()) { | |
| fprintf(stderr, "\n%s : seq copy data length %zd does not match expected length %zd\n", __func__, ncopy, seq_store.size()); | |
| llama_free(ctx3); | |
| llama_free_model(model); | |
| return 1; | |
| } | |
| fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy); | |
| // erase whole kv | |
| llama_kv_cache_clear(ctx3); | |
| fprintf(stderr, "%s : kv cache cleared\n", __func__); | |
| // restore kv into seq 1 | |
| const size_t nset = llama_state_seq_set_data(ctx3, seq_store.data(), 1); | |
| if (nset != seq_store.size()) { | |
| fprintf(stderr, "\n%s : seq set data length %zd does not match expected length %zd\n", __func__, nset, seq_store.size()); | |
| llama_free(ctx3); | |
| llama_free_model(model); | |
| return 1; | |
| } | |
| fprintf(stderr, "%s : seq 1 restored, %zd bytes\n", __func__, nset); | |
| } | |
| // third run with seq 1 instead of 0 | |
| for (auto i = 0; i < params.n_predict; i++) { | |
| auto * logits = llama_get_logits(ctx3); | |
| auto n_vocab = llama_n_vocab(model); | |
| std::vector<llama_token_data> candidates; | |
| candidates.reserve(n_vocab); | |
| for (llama_token token_id = 0; token_id < n_vocab; token_id++) { | |
| candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); | |
| } | |
| llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
| auto next_token = llama_sample_token(ctx3, &candidates_p); | |
| auto next_token_str = llama_token_to_piece(ctx3, next_token); | |
| printf("%s", next_token_str.c_str()); | |
| result2 += next_token_str; | |
| if (llama_decode(ctx3, llama_batch_get_one(&next_token, 1, n_past, 1))) { | |
| fprintf(stderr, "\n%s : failed to evaluate\n", __func__); | |
| llama_free(ctx3); | |
| llama_free_model(model); | |
| return 1; | |
| } | |
| n_past += 1; | |
| } | |
| printf("\n"); | |
| llama_free(ctx3); | |
| llama_free_model(model); | |
| if (result0 != result2) { | |
| fprintf(stderr, "\n%s : error : the seq restore generation is different\n", __func__); | |
| return 1; | |
| } | |
| fprintf(stderr, "\n%s : success\n", __func__); | |
| return 0; | |
| } | |