Spaces:
Runtime error
Runtime error
| from __future__ import annotations | |
| import sys | |
| import os | |
| import ctypes | |
| import functools | |
| from ctypes import ( | |
| c_bool, | |
| c_char_p, | |
| c_int, | |
| c_uint8, | |
| c_float, | |
| c_void_p, | |
| POINTER, | |
| _Pointer, # type: ignore | |
| Structure, | |
| ) | |
| import pathlib | |
| from typing import ( | |
| List, | |
| Union, | |
| NewType, | |
| Optional, | |
| TypeVar, | |
| Callable, | |
| Any, | |
| TYPE_CHECKING, | |
| Generic, | |
| ) | |
| from typing_extensions import TypeAlias | |
| import llama_cpp.llama_cpp as llama_cpp | |
| # Load the library | |
| def _load_shared_library(lib_base_name: str): | |
| # Construct the paths to the possible shared library names | |
| _base_path = pathlib.Path(os.path.abspath(os.path.dirname(__file__))) | |
| # Searching for the library in the current directory under the name "libllama" (default name | |
| # for llamacpp) and "llama" (default name for this repo) | |
| _lib_paths: List[pathlib.Path] = [] | |
| # Determine the file extension based on the platform | |
| if sys.platform.startswith("linux"): | |
| _lib_paths += [ | |
| _base_path / f"lib{lib_base_name}.so", | |
| ] | |
| elif sys.platform == "darwin": | |
| _lib_paths += [ | |
| _base_path / f"lib{lib_base_name}.so", | |
| _base_path / f"lib{lib_base_name}.dylib", | |
| ] | |
| elif sys.platform == "win32": | |
| _lib_paths += [ | |
| _base_path / f"{lib_base_name}.dll", | |
| _base_path / f"lib{lib_base_name}.dll", | |
| ] | |
| else: | |
| raise RuntimeError("Unsupported platform") | |
| if "LLAVA_CPP_LIB" in os.environ: | |
| lib_base_name = os.environ["LLAVA_CPP_LIB"] | |
| _lib = pathlib.Path(lib_base_name) | |
| _base_path = _lib.parent.resolve() | |
| _lib_paths = [_lib.resolve()] | |
| cdll_args = dict() # type: ignore | |
| # Add the library directory to the DLL search path on Windows (if needed) | |
| if sys.platform == "win32" and sys.version_info >= (3, 8): | |
| os.add_dll_directory(str(_base_path)) | |
| if "CUDA_PATH" in os.environ: | |
| os.add_dll_directory(os.path.join(os.environ["CUDA_PATH"], "bin")) | |
| os.add_dll_directory(os.path.join(os.environ["CUDA_PATH"], "lib")) | |
| cdll_args["winmode"] = ctypes.RTLD_GLOBAL | |
| # Try to load the shared library, handling potential errors | |
| for _lib_path in _lib_paths: | |
| if _lib_path.exists(): | |
| try: | |
| return ctypes.CDLL(str(_lib_path), **cdll_args) # type: ignore | |
| except Exception as e: | |
| raise RuntimeError(f"Failed to load shared library '{_lib_path}': {e}") | |
| raise FileNotFoundError( | |
| f"Shared library with base name '{lib_base_name}' not found" | |
| ) | |
| # Specify the base name of the shared library to load | |
| _libllava_base_name = "llava" | |
| # Load the library | |
| _libllava = _load_shared_library(_libllava_base_name) | |
| # ctypes helper | |
| if TYPE_CHECKING: | |
| CtypesCData = TypeVar("CtypesCData", bound=ctypes._CData) # type: ignore | |
| CtypesArray: TypeAlias = ctypes.Array[CtypesCData] # type: ignore | |
| CtypesPointer: TypeAlias = ctypes._Pointer[CtypesCData] # type: ignore | |
| CtypesVoidPointer: TypeAlias = ctypes.c_void_p | |
| class CtypesRef(Generic[CtypesCData]): | |
| pass | |
| CtypesPointerOrRef: TypeAlias = Union[ | |
| CtypesPointer[CtypesCData], CtypesRef[CtypesCData] | |
| ] | |
| CtypesFuncPointer: TypeAlias = ctypes._FuncPointer # type: ignore | |
| F = TypeVar("F", bound=Callable[..., Any]) | |
| def ctypes_function_for_shared_library(lib: ctypes.CDLL): | |
| def ctypes_function( | |
| name: str, argtypes: List[Any], restype: Any, enabled: bool = True | |
| ): | |
| def decorator(f: F) -> F: | |
| if enabled: | |
| func = getattr(lib, name) | |
| func.argtypes = argtypes | |
| func.restype = restype | |
| functools.wraps(f)(func) | |
| return func | |
| else: | |
| return f | |
| return decorator | |
| return ctypes_function | |
| ctypes_function = ctypes_function_for_shared_library(_libllava) | |
| ################################################ | |
| # llava.h | |
| ################################################ | |
| # struct clip_ctx; | |
| clip_ctx_p = NewType("clip_ctx_p", int) | |
| clip_ctx_p_ctypes = c_void_p | |
| # struct llava_image_embed { | |
| # float * embed; | |
| # int n_image_pos; | |
| # }; | |
| class llava_image_embed(Structure): | |
| _fields_ = [ | |
| ("embed", POINTER(c_float)), | |
| ("n_image_pos", c_int), | |
| ] | |
| # /** sanity check for clip <-> llava embed size match */ | |
| # LLAVA_API bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip); | |
| def llava_validate_embed_size( | |
| ctx_llama: llama_cpp.llama_context_p, ctx_clip: clip_ctx_p, / | |
| ) -> bool: ... | |
| # /** build an image embed from image file bytes */ | |
| # LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length); | |
| def llava_image_embed_make_with_bytes( | |
| ctx_clip: clip_ctx_p, | |
| n_threads: Union[c_int, int], | |
| image_bytes: CtypesArray[c_uint8], | |
| image_bytes_length: Union[c_int, int], | |
| /, | |
| ) -> "_Pointer[llava_image_embed]": ... | |
| # /** build an image embed from a path to an image filename */ | |
| # LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path); | |
| def llava_image_embed_make_with_filename( | |
| ctx_clip: clip_ctx_p, n_threads: Union[c_int, int], image_path: bytes, / | |
| ) -> "_Pointer[llava_image_embed]": ... | |
| # LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed); | |
| # /** free an embedding made with llava_image_embed_make_* */ | |
| def llava_image_embed_free(embed: "_Pointer[llava_image_embed]", /): ... | |
| # /** write the image represented by embed into the llama context with batch size n_batch, starting at context pos n_past. on completion, n_past points to the next position in the context after the image embed. */ | |
| # LLAVA_API bool llava_eval_image_embed(struct llama_context * ctx_llama, const struct llava_image_embed * embed, int n_batch, int * n_past); | |
| def llava_eval_image_embed( | |
| ctx_llama: llama_cpp.llama_context_p, | |
| embed: "_Pointer[llava_image_embed]", | |
| n_batch: Union[c_int, int], | |
| n_past: "_Pointer[c_int]", | |
| /, | |
| ) -> bool: ... | |
| ################################################ | |
| # clip.h | |
| ################################################ | |
| # /** load mmproj model */ | |
| # CLIP_API struct clip_ctx * clip_model_load (const char * fname, int verbosity); | |
| def clip_model_load( | |
| fname: bytes, verbosity: Union[c_int, int], / | |
| ) -> Optional[clip_ctx_p]: ... | |
| # /** free mmproj model */ | |
| # CLIP_API void clip_free(struct clip_ctx * ctx); | |
| def clip_free(ctx: clip_ctx_p, /): ... | |