Spaces:
Runtime error
Runtime error
| from fastapi import APIRouter, Depends, Request | |
| from llama_index.core.llms import ChatMessage, MessageRole | |
| from pydantic import BaseModel | |
| from starlette.responses import StreamingResponse | |
| from private_gpt.open_ai.extensions.context_filter import ContextFilter | |
| from private_gpt.open_ai.openai_models import ( | |
| OpenAICompletion, | |
| OpenAIMessage, | |
| to_openai_response, | |
| to_openai_sse_stream, | |
| ) | |
| from private_gpt.server.chat.chat_service import ChatService | |
| from private_gpt.server.utils.auth import authenticated | |
| chat_router = APIRouter(prefix="/v1", dependencies=[Depends(authenticated)]) | |
| class ChatBody(BaseModel): | |
| messages: list[OpenAIMessage] | |
| use_context: bool = False | |
| context_filter: ContextFilter | None = None | |
| include_sources: bool = True | |
| stream: bool = False | |
| model_config = { | |
| "json_schema_extra": { | |
| "examples": [ | |
| { | |
| "messages": [ | |
| { | |
| "role": "system", | |
| "content": "You are a rapper. Always answer with a rap.", | |
| }, | |
| { | |
| "role": "user", | |
| "content": "How do you fry an egg?", | |
| }, | |
| ], | |
| "stream": False, | |
| "use_context": True, | |
| "include_sources": True, | |
| "context_filter": { | |
| "docs_ids": ["c202d5e6-7b69-4869-81cc-dd574ee8ee11"] | |
| }, | |
| } | |
| ] | |
| } | |
| } | |
| def chat_completion( | |
| request: Request, body: ChatBody | |
| ) -> OpenAICompletion | StreamingResponse: | |
| """Given a list of messages comprising a conversation, return a response. | |
| Optionally include an initial `role: system` message to influence the way | |
| the LLM answers. | |
| If `use_context` is set to `true`, the model will use context coming | |
| from the ingested documents to create the response. The documents being used can | |
| be filtered using the `context_filter` and passing the document IDs to be used. | |
| Ingested documents IDs can be found using `/ingest/list` endpoint. If you want | |
| all ingested documents to be used, remove `context_filter` altogether. | |
| When using `'include_sources': true`, the API will return the source Chunks used | |
| to create the response, which come from the context provided. | |
| When using `'stream': true`, the API will return data chunks following [OpenAI's | |
| streaming model](https://platform.openai.com/docs/api-reference/chat/streaming): | |
| ``` | |
| {"id":"12345","object":"completion.chunk","created":1694268190, | |
| "model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"}, | |
| "finish_reason":null}]} | |
| ``` | |
| """ | |
| service = request.state.injector.get(ChatService) | |
| all_messages = [ | |
| ChatMessage(content=m.content, role=MessageRole(m.role)) for m in body.messages | |
| ] | |
| if body.stream: | |
| completion_gen = service.stream_chat( | |
| messages=all_messages, | |
| use_context=body.use_context, | |
| context_filter=body.context_filter, | |
| ) | |
| return StreamingResponse( | |
| to_openai_sse_stream( | |
| completion_gen.response, | |
| completion_gen.sources if body.include_sources else None, | |
| ), | |
| media_type="text/event-stream", | |
| ) | |
| else: | |
| completion = service.chat( | |
| messages=all_messages, | |
| use_context=body.use_context, | |
| context_filter=body.context_filter, | |
| ) | |
| return to_openai_response( | |
| completion.response, completion.sources if body.include_sources else None | |
| ) | |