Spaces:
Running
Running
Upload 3 files
Browse files- README.md +15 -0
- app.py +60 -0
- requirements.txt +5 -0
README.md
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# AI Library Explorer
|
| 2 |
+
|
| 3 |
+
واجهة بحث حر للكتب والرسائل باستخدام MiniLM.
|
| 4 |
+
يمكن للمستخدم كتابة أي سؤال باللغة العربية أو الإنجليزية، ويظهر له أفضل النتائج من الكتب والرسائل.
|
| 5 |
+
|
| 6 |
+
## طريقة التشغيل
|
| 7 |
+
- Space سيقوم تلقائيًا بتشغيل app.py عند التشغيل.
|
| 8 |
+
- البيانات والموديل يجب أن تكون موجودة داخل Space.
|
| 9 |
+
|
| 10 |
+
## الملفات المطلوبة داخل Space
|
| 11 |
+
- books.pkl
|
| 12 |
+
- theses.pkl
|
| 13 |
+
- books_embeddings.pkl
|
| 14 |
+
- theses_embeddings.pkl
|
| 15 |
+
- فولدر الموديل: AI_Library_Model
|
app.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pickle
|
| 5 |
+
from sentence_transformers import SentenceTransformer, util
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
# =========================
|
| 9 |
+
# قراءة البيانات وEmbeddings من ملفات موجودة داخل Space
|
| 10 |
+
# =========================
|
| 11 |
+
with open("books.pkl", "rb") as f:
|
| 12 |
+
books = pickle.load(f)
|
| 13 |
+
|
| 14 |
+
with open("theses.pkl", "rb") as f:
|
| 15 |
+
theses = pickle.load(f)
|
| 16 |
+
|
| 17 |
+
books["type"] = "Book"
|
| 18 |
+
theses["type"] = "Thesis"
|
| 19 |
+
library = pd.concat([books, theses], ignore_index=True)
|
| 20 |
+
|
| 21 |
+
with open("books_embeddings.pkl", "rb") as f:
|
| 22 |
+
books_emb = pickle.load(f)
|
| 23 |
+
|
| 24 |
+
with open("theses_embeddings.pkl", "rb") as f:
|
| 25 |
+
theses_emb = pickle.load(f)
|
| 26 |
+
|
| 27 |
+
library_embeddings = np.vstack([books_emb, theses_emb])
|
| 28 |
+
|
| 29 |
+
# =========================
|
| 30 |
+
# تحميل موديل MiniLM من فولدر موجود داخل Space
|
| 31 |
+
# =========================
|
| 32 |
+
model = SentenceTransformer("AI_Library_Model")
|
| 33 |
+
|
| 34 |
+
# =========================
|
| 35 |
+
# دالة البحث
|
| 36 |
+
# =========================
|
| 37 |
+
def search_library(query, source_type):
|
| 38 |
+
filtered = library[library["type"] == source_type]
|
| 39 |
+
filtered_emb = library_embeddings[filtered.index]
|
| 40 |
+
|
| 41 |
+
query_emb = model.encode(query)
|
| 42 |
+
scores = util.cos_sim(query_emb, filtered_emb)[0]
|
| 43 |
+
top_idx = np.argsort(scores.cpu().numpy())[::-1][:5]
|
| 44 |
+
|
| 45 |
+
results = filtered.iloc[top_idx][["title","author","year","field"]]
|
| 46 |
+
return results
|
| 47 |
+
|
| 48 |
+
# =========================
|
| 49 |
+
# واجهة Gradio تاب واحدة
|
| 50 |
+
# =========================
|
| 51 |
+
with gr.Blocks() as demo:
|
| 52 |
+
gr.Markdown("## مكتبة AI Explorer - البحث الحر المحلي")
|
| 53 |
+
with gr.Row():
|
| 54 |
+
query = gr.Textbox(label="اكتب سؤال البحث")
|
| 55 |
+
source = gr.Dropdown(choices=["Book", "Thesis"], label="نوع المصدر")
|
| 56 |
+
btn = gr.Button("بحث")
|
| 57 |
+
output = gr.Dataframe(headers=["العنوان","المؤلف","السنة","المجال"])
|
| 58 |
+
btn.click(search_library, inputs=[query, source], outputs=output)
|
| 59 |
+
|
| 60 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==3.50.1
|
| 2 |
+
pandas==2.1.1
|
| 3 |
+
numpy==1.26.0
|
| 4 |
+
sentence-transformers==2.2.2
|
| 5 |
+
torch>=2.0.1
|