Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -16,7 +16,7 @@ DRIVE_THESES_ID = "1K2Mtze6ZdvfKUsFMCOWlRBjDq-ZnJNrv"
|
|
| 16 |
EMB_DIR = "embeddings"
|
| 17 |
os.makedirs(EMB_DIR, exist_ok=True)
|
| 18 |
|
| 19 |
-
MODEL_NAME = "all-MiniLM-L6-v2"
|
| 20 |
model = SentenceTransformer(MODEL_NAME)
|
| 21 |
|
| 22 |
# ================== تحميل من Drive ==================
|
|
@@ -36,25 +36,23 @@ def load_and_merge():
|
|
| 36 |
books = pd.read_excel(BOOKS_FILE).fillna("")
|
| 37 |
theses = pd.read_excel(THESES_FILE).fillna("")
|
| 38 |
|
| 39 |
-
# إضافة نوع المصدر
|
| 40 |
books["المصدر"] = "كتاب"
|
| 41 |
theses["المصدر"] = "رسالة"
|
| 42 |
|
| 43 |
-
# دمج
|
| 44 |
merged = pd.concat([books, theses], ignore_index=True)
|
| 45 |
return merged
|
| 46 |
|
| 47 |
library_df = load_and_merge()
|
| 48 |
|
| 49 |
# ================== Embeddings ==================
|
| 50 |
-
def
|
| 51 |
return os.path.join(EMB_DIR, f"{name}.pkl")
|
| 52 |
|
| 53 |
def build_or_load_embeddings(df, name):
|
| 54 |
-
path =
|
| 55 |
if os.path.exists(path):
|
| 56 |
try:
|
| 57 |
-
with open(path,
|
| 58 |
emb = pickle.load(f)
|
| 59 |
if len(emb) == len(df):
|
| 60 |
return emb
|
|
@@ -62,8 +60,8 @@ def build_or_load_embeddings(df, name):
|
|
| 62 |
pass
|
| 63 |
texts = df["العنوان"].astype(str).tolist()
|
| 64 |
emb = model.encode(texts, convert_to_numpy=True, show_progress_bar=True)
|
| 65 |
-
with open(path,
|
| 66 |
-
pickle.dump(emb,
|
| 67 |
return emb
|
| 68 |
|
| 69 |
library_embeddings = build_or_load_embeddings(library_df, "library")
|
|
@@ -86,12 +84,16 @@ def results_to_html(df):
|
|
| 86 |
if df.empty:
|
| 87 |
return "<p>❌ لم يتم العثور على نتائج</p>"
|
| 88 |
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
for _, row in df.iterrows():
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
return CUSTOM_CSS +
|
| 95 |
|
| 96 |
# ================== البحث ==================
|
| 97 |
def local_search_df(query, mode, source_filter):
|
|
@@ -100,19 +102,16 @@ def local_search_df(query, mode, source_filter):
|
|
| 100 |
|
| 101 |
df_search = library_df.copy()
|
| 102 |
|
| 103 |
-
# فلترة حسب المصدر
|
| 104 |
if source_filter != "الكل":
|
| 105 |
df_search = df_search[df_search["المصدر"] == source_filter]
|
| 106 |
|
| 107 |
-
# بحث نصي
|
| 108 |
if mode == "نصي":
|
| 109 |
df = df_search[df_search["العنوان"].str.contains(query, case=False, na=False)]
|
| 110 |
-
# بحث دلالي
|
| 111 |
else:
|
| 112 |
q_emb = model.encode([query], convert_to_numpy=True)
|
| 113 |
scores = util.cos_sim(q_emb, library_embeddings)[0].cpu().numpy()
|
| 114 |
df_search["score"] = scores
|
| 115 |
-
df = df_search.sort_values("score", ascending=False)
|
| 116 |
|
| 117 |
return results_to_html(df), df
|
| 118 |
|
|
@@ -147,7 +146,6 @@ with gr.Blocks(title="البحث الدلالي بالمكتبة") as app:
|
|
| 147 |
)
|
| 148 |
|
| 149 |
btn_search = gr.Button("🔎 بحث")
|
| 150 |
-
|
| 151 |
df_state = gr.State()
|
| 152 |
output_html = gr.HTML()
|
| 153 |
file_out = gr.File(label="⬇️ تحميل النتائج")
|
|
|
|
| 16 |
EMB_DIR = "embeddings"
|
| 17 |
os.makedirs(EMB_DIR, exist_ok=True)
|
| 18 |
|
| 19 |
+
MODEL_NAME = "all-MiniLM-L6-v2" # نموذج أخف وأسرع
|
| 20 |
model = SentenceTransformer(MODEL_NAME)
|
| 21 |
|
| 22 |
# ================== تحميل من Drive ==================
|
|
|
|
| 36 |
books = pd.read_excel(BOOKS_FILE).fillna("")
|
| 37 |
theses = pd.read_excel(THESES_FILE).fillna("")
|
| 38 |
|
|
|
|
| 39 |
books["المصدر"] = "كتاب"
|
| 40 |
theses["المصدر"] = "رسالة"
|
| 41 |
|
|
|
|
| 42 |
merged = pd.concat([books, theses], ignore_index=True)
|
| 43 |
return merged
|
| 44 |
|
| 45 |
library_df = load_and_merge()
|
| 46 |
|
| 47 |
# ================== Embeddings ==================
|
| 48 |
+
def emb_path(name):
|
| 49 |
return os.path.join(EMB_DIR, f"{name}.pkl")
|
| 50 |
|
| 51 |
def build_or_load_embeddings(df, name):
|
| 52 |
+
path = emb_path(name)
|
| 53 |
if os.path.exists(path):
|
| 54 |
try:
|
| 55 |
+
with open(path,"rb") as f:
|
| 56 |
emb = pickle.load(f)
|
| 57 |
if len(emb) == len(df):
|
| 58 |
return emb
|
|
|
|
| 60 |
pass
|
| 61 |
texts = df["العنوان"].astype(str).tolist()
|
| 62 |
emb = model.encode(texts, convert_to_numpy=True, show_progress_bar=True)
|
| 63 |
+
with open(path,"wb") as f:
|
| 64 |
+
pickle.dump(emb,f)
|
| 65 |
return emb
|
| 66 |
|
| 67 |
library_embeddings = build_or_load_embeddings(library_df, "library")
|
|
|
|
| 84 |
if df.empty:
|
| 85 |
return "<p>❌ لم يتم العثور على نتائج</p>"
|
| 86 |
|
| 87 |
+
for col in ["المؤلف","العنوان","سنة النشر","الموقع على الرف","المصدر","score"]:
|
| 88 |
+
if col not in df.columns:
|
| 89 |
+
df[col] = "-"
|
| 90 |
+
|
| 91 |
+
html_results = ""
|
| 92 |
for _, row in df.iterrows():
|
| 93 |
+
single_df = pd.DataFrame([row[["المؤلف","العنوان","سنة النشر","الموقع على الرف","المصدر","score"]]])
|
| 94 |
+
html_results += single_df.to_html(index=False, escape=False, classes="styled-table", border=0)
|
| 95 |
+
|
| 96 |
+
return CUSTOM_CSS + html_results
|
| 97 |
|
| 98 |
# ================== البحث ==================
|
| 99 |
def local_search_df(query, mode, source_filter):
|
|
|
|
| 102 |
|
| 103 |
df_search = library_df.copy()
|
| 104 |
|
|
|
|
| 105 |
if source_filter != "الكل":
|
| 106 |
df_search = df_search[df_search["المصدر"] == source_filter]
|
| 107 |
|
|
|
|
| 108 |
if mode == "نصي":
|
| 109 |
df = df_search[df_search["العنوان"].str.contains(query, case=False, na=False)]
|
|
|
|
| 110 |
else:
|
| 111 |
q_emb = model.encode([query], convert_to_numpy=True)
|
| 112 |
scores = util.cos_sim(q_emb, library_embeddings)[0].cpu().numpy()
|
| 113 |
df_search["score"] = scores
|
| 114 |
+
df = df_search.sort_values("score", ascending=False).head(20) # أعلى 20 نتيجة
|
| 115 |
|
| 116 |
return results_to_html(df), df
|
| 117 |
|
|
|
|
| 146 |
)
|
| 147 |
|
| 148 |
btn_search = gr.Button("🔎 بحث")
|
|
|
|
| 149 |
df_state = gr.State()
|
| 150 |
output_html = gr.HTML()
|
| 151 |
file_out = gr.File(label="⬇️ تحميل النتائج")
|