Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import requests | |
| st.title("SuperKartApp") | |
| # Input fields for product and store data | |
| Product_Weight = st.number_input("Product Weight", min_value=0.0, value=12.5) | |
| Product_Sugar_Content = st.selectbox("Product Sugar Content", ["Low Sugar", "Regular", "No Sugar"]) | |
| Product_Allocated_Area = st.number_input("Product Allocated Area", min_value=0.0, value=.05, max_value=0.5) | |
| Product_MRP = st.number_input("Product Price", min_value=0.0, value=150.0) | |
| Store_Size = st.selectbox("Store Size", ["Small", "Medium", "High"]) | |
| Store_Location_City_Type = st.selectbox("Store Location City Type", ["Tier 1", "Tier 2", "Tier 3"]) | |
| Store_Type = st.selectbox("Store Type", ["Supermarket Type1", "Supermarket Type2", "Departmental Store", "Food Mart"]) | |
| Product_Id_char = st.selectbox("Product Id Char", ["DR","FD","NC"]) | |
| Store_Age_Years = st.number_input("Store Age Years", min_value=0.0, value=15.0) | |
| Product_Type_Category = st.selectbox("Product Type Category", ['Frozen Foods','Dairy','Canned','Baking Goods','Health and Hygiene','Snack Foods','Meat','Household','Hard Drinks','Fruits and Vegetables','Breads','Soft Drinks','Breakfast','Starchy Foods','Seafood','Others']) | |
| product_data = { | |
| "Product_Weight": Product_Weight, | |
| "Product_Sugar_Content": Product_Sugar_Content, | |
| "Product_Allocated_Area": Product_Allocated_Area, | |
| "Product_MRP": Product_MRP, | |
| "Store_Size": Store_Size, | |
| "Store_Location_City_Type": Store_Location_City_Type, | |
| "Store_Type": Store_Type, | |
| "Product_Id_char": Product_Id_char, | |
| "Store_Age_Years": Store_Age_Years, | |
| "Product_Type_Category": Product_Type_Category | |
| } | |
| if st.button("Predict", type='primary'): | |
| response = requests.post("https://aenewton42-SuperKart.hf.space/v1/predict", json=product_data) | |
| if response.status_code == 200: | |
| result = response.json() | |
| predicted_sales = result["Sales"] | |
| st.write(f"Predicted Product Store Sales Total: ₹{predicted_sales:.2f}") | |
| else: | |
| st.error("Error in API request") | |