| from transformers import Pix2StructProcessor, Pix2StructForConditionalGeneration | |
| import requests | |
| from PIL import Image | |
| processor = Pix2StructProcessor.from_pretrained('google/deplot') | |
| model = Pix2StructForConditionalGeneration.from_pretrained('google/deplot') | |
| url = "https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/5090.png" | |
| image = Image.open(requests.get(url, stream=True).raw) | |
| inputs = processor(images=image, text="Generate underlying data table of the figure below:", return_tensors="pt") | |
| predictions = model.generate(**inputs, max_new_tokens=512) | |
| print(processor.decode(predictions[0], skip_special_tokens=True)) |