Spaces:
Sleeping
Sleeping
Andrew Green
commited on
Commit
·
c23cd24
1
Parent(s):
0e4ad79
batch inference and add progressbar
Browse files
app.py
CHANGED
|
@@ -23,7 +23,7 @@ def get_pipeline():
|
|
| 23 |
model_name = "afg1/pombe_curation_fold_0"
|
| 24 |
|
| 25 |
|
| 26 |
-
pipe = pipeline(model=model_name)
|
| 27 |
return pipe
|
| 28 |
|
| 29 |
|
|
@@ -31,16 +31,58 @@ def get_pipeline():
|
|
| 31 |
|
| 32 |
|
| 33 |
@spaces.GPU
|
| 34 |
-
def classify_abstracts(abstracts:Dict[str, str]) -> None:
|
| 35 |
pipe = get_pipeline()
|
| 36 |
-
pmids = list(abstracts.keys())
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
for pmid, abs in zip(pmids, classification):
|
| 40 |
-
|
| 41 |
-
|
| 42 |
|
| 43 |
-
return classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
|
| 46 |
|
|
@@ -122,9 +164,9 @@ def fetch_abstracts_batch(pmids: List[str], batch_size: int = 200) -> Dict[str,
|
|
| 122 |
# Simple abstract
|
| 123 |
abstract_text = abstract_element.text
|
| 124 |
else:
|
| 125 |
-
abstract_text = "
|
| 126 |
-
|
| 127 |
-
|
| 128 |
|
| 129 |
# Respect NCBI's rate limits
|
| 130 |
time.sleep(0.34)
|
|
@@ -275,6 +317,9 @@ def create_interface():
|
|
| 275 |
with gr.Row():
|
| 276 |
d = gr.DownloadButton("Download results", visible=True, interactive=False)
|
| 277 |
|
|
|
|
|
|
|
|
|
|
| 278 |
d.click(download_file, None, d)
|
| 279 |
|
| 280 |
search_button.click(
|
|
|
|
| 23 |
model_name = "afg1/pombe_curation_fold_0"
|
| 24 |
|
| 25 |
|
| 26 |
+
pipe = pipeline(model=model_name, task="text-classification")
|
| 27 |
return pipe
|
| 28 |
|
| 29 |
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
@spaces.GPU
|
| 34 |
+
def classify_abstracts(abstracts:Dict[str, str],batch_size=64, progress=gr.Progress()) -> None:
|
| 35 |
pipe = get_pipeline()
|
| 36 |
+
# pmids = list(abstracts.keys())
|
| 37 |
+
# batch_size = 64
|
| 38 |
+
# classification = []
|
| 39 |
+
# abstracts_list = list(abstracts.values())
|
| 40 |
+
# for i in range(0, len(abstracts), batch_size):
|
| 41 |
+
# classification.extend(pipe(abstracts_list[i:i+batch_size]))
|
| 42 |
|
| 43 |
+
# for pmid, abs in zip(pmids, classification):
|
| 44 |
+
# abs['label'] = label_lookup[abs['label']]
|
| 45 |
+
# abs['pmid'] = pmid
|
| 46 |
|
| 47 |
+
# return classification
|
| 48 |
+
results = []
|
| 49 |
+
total = len(abstracts)
|
| 50 |
+
|
| 51 |
+
# Convert dictionary to lists of PMIDs and abstracts, preserving order
|
| 52 |
+
pmids = list(abstracts.keys())
|
| 53 |
+
abstract_texts = list(abstracts.values())
|
| 54 |
+
|
| 55 |
+
# Initialize progress bar
|
| 56 |
+
progress(0, desc="Starting classification...")
|
| 57 |
+
|
| 58 |
+
# Process in batches
|
| 59 |
+
for i in range(0, total, batch_size):
|
| 60 |
+
# Get current batch
|
| 61 |
+
batch_abstracts = abstract_texts[i:i + batch_size]
|
| 62 |
+
batch_pmids = pmids[i:i + batch_size]
|
| 63 |
+
|
| 64 |
+
try:
|
| 65 |
+
# Classify the batch
|
| 66 |
+
classifications = pipe(batch_abstracts)
|
| 67 |
+
|
| 68 |
+
# Process each result in the batch
|
| 69 |
+
for pmid, classification in zip(batch_pmids, classifications):
|
| 70 |
+
results.append({
|
| 71 |
+
'pmid': pmid,
|
| 72 |
+
'classification': classification['label'],
|
| 73 |
+
'score': classification['score']
|
| 74 |
+
})
|
| 75 |
+
|
| 76 |
+
# Update progress
|
| 77 |
+
progress(min((i + batch_size) / total, 1.0),
|
| 78 |
+
desc=f"Classified {min(i + batch_size, total)}/{total} abstracts...")
|
| 79 |
+
|
| 80 |
+
except Exception as e:
|
| 81 |
+
print(f"Error classifying batch starting at index {i}: {str(e)}")
|
| 82 |
+
continue
|
| 83 |
+
|
| 84 |
+
progress(1.0, desc="Classification complete!")
|
| 85 |
+
return results
|
| 86 |
|
| 87 |
|
| 88 |
|
|
|
|
| 164 |
# Simple abstract
|
| 165 |
abstract_text = abstract_element.text
|
| 166 |
else:
|
| 167 |
+
abstract_text = ""
|
| 168 |
+
if len(abstract_text) > 0:
|
| 169 |
+
all_abstracts[pmid] = abstract_text
|
| 170 |
|
| 171 |
# Respect NCBI's rate limits
|
| 172 |
time.sleep(0.34)
|
|
|
|
| 317 |
with gr.Row():
|
| 318 |
d = gr.DownloadButton("Download results", visible=True, interactive=False)
|
| 319 |
|
| 320 |
+
with gr.Row():
|
| 321 |
+
progress=gr.Progress()
|
| 322 |
+
|
| 323 |
d.click(download_file, None, d)
|
| 324 |
|
| 325 |
search_button.click(
|