File size: 13,404 Bytes
19ecb6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import os
import re
import json
import requests
import pandas as pd
from pathlib import Path
from typing import Optional, Union, Dict, Any, List
from dotenv import load_dotenv
load_dotenv()
# Simple tool-based agent without LangGraph for now
class SimpleAgent:
"""Simple agent with tool capabilities"""
def __init__(self, llm):
self.llm = llm
self.tools = {
'search_web': self.search_web,
'search_wikipedia': self.search_wikipedia,
'execute_python': self.execute_python,
'read_excel_file': self.read_excel_file,
'read_text_file': self.read_text_file,
}
def search_web(self, query: str) -> str:
"""Search the web using DuckDuckGo for current information."""
try:
search_url = f"https://api.duckduckgo.com/?q={query}&format=json&no_html=1&skip_disambig=1"
response = requests.get(search_url, timeout=10)
if response.status_code == 200:
data = response.json()
results = []
if data.get("AbstractText"):
results.append(f"Abstract: {data['AbstractText']}")
if data.get("RelatedTopics"):
for topic in data["RelatedTopics"][:3]:
if isinstance(topic, dict) and topic.get("Text"):
results.append(f"Related: {topic['Text']}")
if results:
return "\n".join(results)
else:
return f"Search performed for '{query}' but no specific results found."
else:
return f"Search failed with status code {response.status_code}"
except Exception as e:
return f"Search error: {str(e)}"
def search_wikipedia(self, query: str) -> str:
"""Search Wikipedia for factual information."""
try:
search_url = "https://en.wikipedia.org/api/rest_v1/page/summary/" + query.replace(" ", "_")
response = requests.get(search_url, timeout=10)
if response.status_code == 200:
data = response.json()
extract = data.get("extract", "")
if extract:
return f"Wikipedia: {extract[:500]}..."
else:
return f"Wikipedia page found for '{query}' but no extract available."
else:
return f"Wikipedia search failed for '{query}'"
except Exception as e:
return f"Wikipedia search error: {str(e)}"
def execute_python(self, code: str) -> str:
"""Execute Python code and return the result."""
try:
import io
import sys
safe_globals = {
'__builtins__': {
'print': print, 'len': len, 'str': str, 'int': int, 'float': float,
'bool': bool, 'list': list, 'dict': dict, 'tuple': tuple, 'set': set,
'range': range, 'sum': sum, 'max': max, 'min': min, 'abs': abs,
'round': round, 'sorted': sorted, 'enumerate': enumerate, 'zip': zip,
},
'math': __import__('math'),
'json': __import__('json'),
}
old_stdout = sys.stdout
sys.stdout = mystdout = io.StringIO()
try:
exec(code, safe_globals)
output = mystdout.getvalue()
finally:
sys.stdout = old_stdout
return output if output else "Code executed successfully (no output)"
except Exception as e:
return f"Python execution error: {str(e)}"
def read_excel_file(self, file_path: str, sheet_name: Optional[str] = None) -> str:
"""Read an Excel file and return its contents."""
try:
file_path_obj = Path(file_path)
if not file_path_obj.exists():
return f"Error: File not found at {file_path}"
if sheet_name and sheet_name.isdigit():
sheet_name = int(sheet_name)
elif sheet_name is None:
sheet_name = 0
df = pd.read_excel(file_path, sheet_name=sheet_name)
if len(df) > 20:
result = f"Excel file with {len(df)} rows and {len(df.columns)} columns:\n\n"
result += "First 10 rows:\n" + df.head(10).to_string(index=False)
result += f"\n\n... ({len(df) - 20} rows omitted) ...\n\n"
result += "Last 10 rows:\n" + df.tail(10).to_string(index=False)
else:
result = f"Excel file with {len(df)} rows and {len(df.columns)} columns:\n\n"
result += df.to_string(index=False)
return result
except Exception as e:
return f"Error reading Excel file: {str(e)}"
def read_text_file(self, file_path: str) -> str:
"""Read a text file and return its contents."""
try:
file_path_obj = Path(file_path)
if not file_path_obj.exists():
return f"Error: File not found at {file_path}"
encodings = ['utf-8', 'utf-16', 'iso-8859-1', 'cp1252']
for encoding in encodings:
try:
with open(file_path_obj, 'r', encoding=encoding) as f:
content = f.read()
return f"File content ({encoding} encoding):\n\n{content}"
except UnicodeDecodeError:
continue
return f"Error: Could not decode file with any standard encoding"
except Exception as e:
return f"Error reading file: {str(e)}"
def run(self, question: str) -> str:
"""Run the agent with tool usage"""
# First, try to answer directly
direct_response = self.llm(f"""
Question: {question}
Think step by step. If this question requires:
- Web search for current information, say "NEED_SEARCH: <search query>"
- Mathematical calculation, say "NEED_PYTHON: <python code>"
- Wikipedia lookup, say "NEED_WIKI: <search term>"
- File analysis (if file path mentioned), say "NEED_FILE: <file_path>"
Otherwise, provide a direct answer.
Your response:""")
# Check if tools are needed
if "NEED_SEARCH:" in direct_response:
search_query = direct_response.split("NEED_SEARCH:")[1].strip()
search_result = self.search_web(search_query)
return self.llm(f"Question: {question}\n\nSearch results: {search_result}\n\nFinal answer:")
elif "NEED_PYTHON:" in direct_response:
code = direct_response.split("NEED_PYTHON:")[1].strip()
exec_result = self.execute_python(code)
return self.llm(f"Question: {question}\n\nCalculation result: {exec_result}\n\nFinal answer:")
elif "NEED_WIKI:" in direct_response:
wiki_query = direct_response.split("NEED_WIKI:")[1].strip()
wiki_result = self.search_wikipedia(wiki_query)
return self.llm(f"Question: {question}\n\nWikipedia info: {wiki_result}\n\nFinal answer:")
elif "NEED_FILE:" in direct_response:
file_path = direct_response.split("NEED_FILE:")[1].strip()
if file_path.endswith(('.xlsx', '.xls')):
file_content = self.read_excel_file(file_path)
else:
file_content = self.read_text_file(file_path)
return self.llm(f"Question: {question}\n\nFile content: {file_content}\n\nFinal answer:")
else:
return direct_response
class OpenRouterLLM:
"""Simple OpenRouter LLM wrapper"""
def __init__(self, model: str = "deepseek/deepseek-v3.1-terminus"):
self.api_key = os.getenv("OPENROUTER_API_KEY") or os.getenv("my_key")
self.model = model
self.base_url = "https://openrouter.ai/api/v1/chat/completions"
def __call__(self, prompt: str, max_tokens: int = 1500, temperature: float = 0.1) -> str:
"""Make API call to OpenRouter"""
if not self.api_key or not self.api_key.startswith('sk-or-v1-'):
return "Error: Invalid OpenRouter API key"
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
payload = {
"model": self.model,
"messages": [
{
"role": "system",
"content": "You are a helpful AI assistant. Provide direct, accurate answers. For GAIA evaluation, be precise and concise."
},
{
"role": "user",
"content": prompt
}
],
"temperature": temperature,
"max_tokens": max_tokens,
}
try:
response = requests.post(self.base_url, headers=headers, json=payload, timeout=30)
if response.status_code != 200:
return f"API Error: {response.status_code}"
result = response.json()
if "choices" in result and len(result["choices"]) > 0:
answer = result["choices"][0]["message"]["content"].strip()
return self._clean_answer(answer)
else:
return "Error: No response content received"
except Exception as e:
return f"Error: {str(e)}"
def _clean_answer(self, answer: str) -> str:
"""Clean the answer for GAIA evaluation"""
answer = answer.strip()
# Remove common prefixes
prefixes = [
"Answer:", "The answer is:", "Final answer:", "Result:",
"Solution:", "Based on", "Therefore", "In conclusion"
]
for prefix in prefixes:
if answer.lower().startswith(prefix.lower()):
answer = answer[len(prefix):].strip()
if answer.startswith(':'):
answer = answer[1:].strip()
break
# Remove quotes and periods from short answers
if len(answer.split()) <= 3:
answer = answer.strip('"\'.')
return answer
class GaiaAgent:
"""Simple tool-based agent for GAIA tasks"""
def __init__(self):
print("Initializing GaiaAgent with OpenRouter DeepSeek...")
# Initialize the LLM
self.llm = OpenRouterLLM(model="deepseek/deepseek-v3.1-terminus")
# Initialize the agent with tools
self.agent = SimpleAgent(self.llm)
print("GaiaAgent initialized successfully!")
def __call__(self, task_id: str, question: str) -> str:
"""Process a question and return the answer"""
try:
print(f"Processing task {task_id}: {question[:100]}...")
# Check if there are file references in the question
enhanced_question = self._enhance_question_with_file_analysis(question)
# Run the agent
answer = self.agent.run(enhanced_question)
# Clean up the answer
clean_answer = self._clean_final_answer(answer)
print(f"Agent answer for {task_id}: {clean_answer}")
return clean_answer
except Exception as e:
error_msg = f"Agent error: {str(e)}"
print(f"Error processing task {task_id}: {error_msg}")
return error_msg
def _enhance_question_with_file_analysis(self, question: str) -> str:
"""Check if question mentions files and enhance accordingly"""
# Look for file path mentions in the question
file_patterns = [
r'/tmp/gaia_cached_files/[^\s]+',
r'saved locally at:\s*([^\s]+)',
r'file.*?\.xlsx?',
r'file.*?\.csv',
r'file.*?\.txt'
]
for pattern in file_patterns:
matches = re.findall(pattern, question, re.IGNORECASE)
if matches:
# File found, the agent will handle it automatically
break
return question
def _clean_final_answer(self, answer: str) -> str:
"""Final cleaning of the answer"""
answer = answer.strip()
# Look for final answer pattern
if "final answer:" in answer.lower():
parts = answer.lower().split("final answer:")
if len(parts) > 1:
answer = answer.split(":")[-1].strip()
# Remove common unnecessary phrases
cleanup_phrases = [
"based on the", "according to", "the answer is", "therefore",
"in conclusion", "as a result", "so the answer is"
]
for phrase in cleanup_phrases:
if answer.lower().startswith(phrase):
answer = answer[len(phrase):].strip()
break
# Clean up formatting
answer = answer.strip('.,;:"\'')
return answer |