thinhbtt's picture
Update app.py
a3e6286 verified
raw
history blame
4.21 kB
import os
import gradio as gr
import requests
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# -----------------------------------------------------
# REAL AGENT USING HUGGINGFACE MODEL (NO API KEY NEEDED)
# -----------------------------------------------------
class BasicAgent:
def __init__(self):
print("Loading HF model...")
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float32,
device_map="auto"
)
def __call__(self, question: str) -> str:
prompt = f"""
You are a strict exam solver.
Give ONLY the final answer. No explanation. No extra words.
Question:
{question}
Final Answer:
"""
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
output_ids = self.model.generate(
**inputs,
max_new_tokens=80,
temperature=0.1,
do_sample=False
)
decoded = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
# lấy câu trả lời sau "Final Answer:"
if "Final Answer:" in decoded:
decoded = decoded.split("Final Answer:")[-1].strip()
return decoded
# -----------------------------------------------------
# RUN + SUBMIT ANSWERS
# -----------------------------------------------------
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
else:
return "Please login to HuggingFace.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# Instantiate Agent
try:
agent = BasicAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# Fetch Questions
try:
response = requests.get(questions_url, timeout=20)
response.raise_for_status()
questions = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for q in questions:
task_id = q["task_id"]
text = q["question"]
try:
ans = agent(text)
except Exception as e:
ans = f"ERROR: {e}"
answers_payload.append({"task_id": task_id, "submitted_answer": ans})
results_log.append({"Task ID": task_id, "Question": text, "Submitted Answer": ans})
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
# Submit answers
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_msg = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Score: {result_data.get('score')}%\n"
f"Correct: {result_data.get('correct_count')}/{result_data.get('total_attempted')}\n"
f"Message: {result_data.get('message')}"
)
return final_msg, pd.DataFrame(results_log)
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# -----------------------------------------------------
# GRADIO UI
# -----------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# 🧠 GAIA Unit 4 Agent Evaluation Runner")
gr.Markdown("Login → Run agent → Auto-submit to leaderboard")
gr.LoginButton()
run_btn = gr.Button("🚀 Run Evaluation & Submit All Answers")
status_box = gr.Textbox(label="Status", lines=5)
table = gr.DataFrame(label="Agent Answers")
run_btn.click(
run_and_submit_all,
outputs=[status_box, table]
)
if __name__ == "__main__":
demo.launch()