thinhbtt commited on
Commit
b48ac2a
·
verified ·
1 Parent(s): 81917a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +187 -132
app.py CHANGED
@@ -1,107 +1,213 @@
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
 
 
6
 
7
- # (Keep Constants as is)
8
- # --- Constants ---
 
 
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
 
 
 
 
 
 
 
 
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
  """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
 
26
  """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  if profile:
31
- username= f"{profile.username}"
32
- print(f"User logged in: {username}")
33
  else:
34
- print("User not logged in.")
35
  return "Please Login to Hugging Face with the button.", None
36
 
37
  api_url = DEFAULT_API_URL
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
- agent = BasicAgent()
44
  except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
 
51
- # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
 
 
53
  try:
54
- response = requests.get(questions_url, timeout=15)
55
- response.raise_for_status()
56
- questions_data = response.json()
57
- if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
 
 
71
 
72
- # 3. Run your Agent
73
  results_log = []
74
  answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
  for item in questions_data:
77
  task_id = item.get("task_id")
78
  question_text = item.get("question")
 
79
  if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
  continue
 
82
  try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
 
 
 
 
 
 
89
 
90
  if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
- # 4. Prepare Submission
95
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
 
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
  try:
102
- response = requests.post(submit_url, json=submission_data, timeout=60)
103
- response.raise_for_status()
104
- result_data = response.json()
105
  final_status = (
106
  f"Submission Successful!\n"
107
  f"User: {result_data.get('username')}\n"
@@ -109,88 +215,37 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
109
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
  f"Message: {result_data.get('message', 'No message received.')}"
111
  )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
  except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
  try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
  except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
 
142
 
143
- # --- Build Gradio Interface using Blocks ---
 
 
144
  with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
 
146
  gr.Markdown(
147
  """
148
- **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
  """
159
  )
160
-
161
  gr.LoginButton()
162
-
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
173
 
174
  if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
- space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
-
180
- if space_host_startup:
181
- print(f"✅ SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
- else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
- print(f"✅ SPACE_ID found: {space_id_startup}")
188
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
- else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
1
  import os
2
  import gradio as gr
3
  import requests
 
4
  import pandas as pd
5
+ import time
6
+ from typing import Optional, List, Dict
7
 
8
+ # Optional: import openai (pip install openai)
9
+ import openai
10
+
11
+ # Constants
12
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
13
+ OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
14
+ # Default model - you can change to "gpt-4o" or "gpt-4.1" if available
15
+ OPENAI_MODEL = os.getenv("OPENAI_MODEL", "gpt-4o") # or "gpt-4.1"
16
+
17
+ if not OPENAI_API_KEY:
18
+ print("WARNING: OPENAI_API_KEY not set. Set it in Space secrets before running.")
19
+
20
+ openai.api_key = OPENAI_API_KEY
21
 
22
+ # -----------------------------
23
+ # Agent implementation (OpenAI-based)
24
+ # -----------------------------
25
+ class OpenAIAgent:
 
 
 
 
 
 
 
 
26
  """
27
+ Minimal agent that uses OpenAI chat completion to answer each question.
28
+ It is tuned to return *only* the final answer (no extra commentary) so
29
+ that it matches the EXACT-MATCH submission requirement.
30
  """
31
+
32
+ def __init__(self, model: str = OPENAI_MODEL, temperature: float = 0.0):
33
+ self.model = model
34
+ self.temperature = temperature
35
+
36
+ def _build_prompt_messages(self, question_text: str, file_summaries: Optional[List[str]] = None) -> List[Dict]:
37
+ """
38
+ Build messages for chat completion. We instruct the model to output
39
+ the answer ONLY (single-line), nothing else. No 'Final Answer' phrase.
40
+ """
41
+ system = (
42
+ "You are an assistant that MUST produce a single concise answer only. "
43
+ "When asked a question, respond with the exact answer text only — nothing else. "
44
+ "Do NOT include explanation, reasoning steps, or any extra punctuation beyond the answer. "
45
+ "If the question requires a short phrase or number, output that. "
46
+ "If you do not know, output 'I don't know'."
47
+ )
48
+ user_parts = [f"Question: {question_text}"]
49
+ if file_summaries:
50
+ # attach file summaries if provided
51
+ user_parts.append("File summaries (use these to answer):")
52
+ user_parts.extend(file_summaries)
53
+
54
+ user = "\n".join(user_parts)
55
+ return [
56
+ {"role": "system", "content": system},
57
+ {"role": "user", "content": user},
58
+ ]
59
+
60
+ def _call_openai(self, messages: List[Dict], max_tokens: int = 60) -> str:
61
+ """
62
+ Call OpenAI ChatCompletion API (supports gpt-4o / gpt-4.1). Return assistant text.
63
+ """
64
+ if not OPENAI_API_KEY:
65
+ raise RuntimeError("OPENAI_API_KEY not set in environment.")
66
+
67
+ try:
68
+ response = openai.ChatCompletion.create(
69
+ model=self.model,
70
+ messages=messages,
71
+ temperature=self.temperature,
72
+ max_tokens=max_tokens,
73
+ top_p=1.0,
74
+ n=1,
75
+ )
76
+ # Extract text (handles typical response structure)
77
+ text = ""
78
+ # openai returns choices list with message
79
+ choices = response.get("choices", [])
80
+ if choices and "message" in choices[0]:
81
+ text = choices[0]["message"].get("content", "")
82
+ else:
83
+ # fallback for older/newer SDK response shapes
84
+ text = response["choices"][0]["text"]
85
+ # trim
86
+ return text.strip()
87
+ except Exception as e:
88
+ # bubble up informative exception for logging
89
+ raise RuntimeError(f"OpenAI API error: {e}")
90
+
91
+ def summarize_file(self, file_url: str) -> Optional[str]:
92
+ """
93
+ Simple downloader + summarizer placeholder.
94
+ For text files, fetch content and truncate. For images or other binary files,
95
+ just return a placeholder note (could be extended).
96
+ """
97
+ try:
98
+ r = requests.get(file_url, timeout=10)
99
+ r.raise_for_status()
100
+ content_type = r.headers.get("Content-Type", "")
101
+ if "text" in content_type or file_url.lower().endswith((".txt", ".md", ".csv")):
102
+ text = r.text
103
+ # keep first 1000 chars to avoid huge prompts
104
+ summary = text[:1000].replace("\n", " ")
105
+ return f"[file content preview] {summary}"
106
+ else:
107
+ # For non-text file, just inform the model of the file name
108
+ return f"[file] downloaded from {file_url} (type: {content_type})"
109
+ except Exception as e:
110
+ print(f"Warning: Unable to fetch or summarize file {file_url}: {e}")
111
+ return None
112
+
113
+ def answer(self, question_text: str, files: Optional[List[str]] = None) -> str:
114
+ """
115
+ Main entry: prepare prompt, call model, and return answer string.
116
+ Ensures we strip quotes/newlines to produce a concise single-line answer.
117
+ """
118
+ file_summaries = []
119
+ if files:
120
+ for furl in files:
121
+ s = self.summarize_file(furl)
122
+ if s:
123
+ file_summaries.append(s)
124
+
125
+ messages = self._build_prompt_messages(question_text, file_summaries if file_summaries else None)
126
+
127
+ raw = self._call_openai(messages, max_tokens=80)
128
+ # Post-process: keep single-line, strip surrounding quotes, remove trailing punctuation if it's just noise
129
+ ans = " ".join(raw.splitlines()).strip()
130
+ # remove wrapping quotes
131
+ if (ans.startswith('"') and ans.endswith('"')) or (ans.startswith("'") and ans.endswith("'")):
132
+ ans = ans[1:-1].strip()
133
+ # final safety: if empty, return "I don't know"
134
+ if not ans:
135
+ ans = "I don't know"
136
+ return ans
137
+
138
+
139
+ # -----------------------------
140
+ # Runner / UI glue (kept similar to original)
141
+ # -----------------------------
142
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
143
+ """
144
+ Fetches all questions, runs the OpenAIAgent on them, submits all answers,
145
+ and returns status string and results DataFrame.
146
+ """
147
+ space_id = os.getenv("SPACE_ID")
148
 
149
  if profile:
150
+ username = f"{profile.username}"
 
151
  else:
 
152
  return "Please Login to Hugging Face with the button.", None
153
 
154
  api_url = DEFAULT_API_URL
155
  questions_url = f"{api_url}/questions"
156
  submit_url = f"{api_url}/submit"
157
 
158
+ # instantiate agent
159
  try:
160
+ agent = OpenAIAgent()
161
  except Exception as e:
 
162
  return f"Error initializing agent: {e}", None
 
 
 
163
 
164
+ # agent_code repo URL
165
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else ""
166
+
167
+ # fetch questions
168
  try:
169
+ resp = requests.get(questions_url, timeout=15)
170
+ resp.raise_for_status()
171
+ questions_data = resp.json()
 
 
 
 
 
 
 
 
 
 
 
172
  except Exception as e:
173
+ return f"Error fetching questions: {e}", None
174
+
175
+ if not questions_data:
176
+ return "No questions returned from server.", None
177
 
 
178
  results_log = []
179
  answers_payload = []
180
+
181
  for item in questions_data:
182
  task_id = item.get("task_id")
183
  question_text = item.get("question")
184
+ files = item.get("files") or []
185
  if not task_id or question_text is None:
 
186
  continue
187
+
188
  try:
189
+ ans = agent.answer(question_text, files)
 
 
190
  except Exception as e:
191
+ ans = "I don't know"
192
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
193
+ else:
194
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": ans})
195
+
196
+ answers_payload.append({"task_id": task_id, "submitted_answer": ans})
197
+
198
+ # small sleep to avoid rate limits
199
+ time.sleep(0.5)
200
 
201
  if not answers_payload:
202
+ return "Agent produced no answers.", pd.DataFrame(results_log)
 
203
 
 
204
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
 
 
205
 
206
+ # submit
 
207
  try:
208
+ r = requests.post(submit_url, json=submission_data, timeout=60)
209
+ r.raise_for_status()
210
+ result_data = r.json()
211
  final_status = (
212
  f"Submission Successful!\n"
213
  f"User: {result_data.get('username')}\n"
 
215
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
216
  f"Message: {result_data.get('message', 'No message received.')}"
217
  )
218
+ return final_status, pd.DataFrame(results_log)
 
 
219
  except requests.exceptions.HTTPError as e:
 
220
  try:
221
+ text = e.response.text
222
+ except:
223
+ text = str(e)
224
+ return f"Submission failed: {text}", pd.DataFrame(results_log)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225
  except Exception as e:
226
+ return f"Submission failed: {e}", pd.DataFrame(results_log)
 
 
 
227
 
228
 
229
+ # -----------------------------
230
+ # Build Gradio Interface
231
+ # -----------------------------
232
  with gr.Blocks() as demo:
233
+ gr.Markdown("# Basic Agent Evaluation Runner (OpenAI-based)")
234
+
235
  gr.Markdown(
236
  """
237
+ Instructions:
238
+ 1. Add your OpenAI key as a secret named `OPENAI_API_KEY` in this Space.
239
+ 2. Ensure requirements.txt contains `openai`.
240
+ 3. Login, then click 'Run Evaluation & Submit All Answers'.
 
 
 
 
 
 
241
  """
242
  )
 
243
  gr.LoginButton()
 
244
  run_button = gr.Button("Run Evaluation & Submit All Answers")
 
245
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
246
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
247
 
248
+ run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
 
 
 
249
 
250
  if __name__ == "__main__":
251
+ demo.launch(debug=True, share=False)