Update app.py
Browse files
app.py
CHANGED
|
@@ -1,107 +1,213 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
-
import inspect
|
| 5 |
import pandas as pd
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
# (
|
| 8 |
-
|
|
|
|
|
|
|
| 9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
print("BasicAgent initialized.")
|
| 16 |
-
def __call__(self, question: str) -> str:
|
| 17 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 18 |
-
fixed_answer = "This is a default answer."
|
| 19 |
-
print(f"Agent returning fixed answer: {fixed_answer}")
|
| 20 |
-
return fixed_answer
|
| 21 |
-
|
| 22 |
-
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 23 |
"""
|
| 24 |
-
|
| 25 |
-
|
|
|
|
| 26 |
"""
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
if profile:
|
| 31 |
-
username= f"{profile.username}"
|
| 32 |
-
print(f"User logged in: {username}")
|
| 33 |
else:
|
| 34 |
-
print("User not logged in.")
|
| 35 |
return "Please Login to Hugging Face with the button.", None
|
| 36 |
|
| 37 |
api_url = DEFAULT_API_URL
|
| 38 |
questions_url = f"{api_url}/questions"
|
| 39 |
submit_url = f"{api_url}/submit"
|
| 40 |
|
| 41 |
-
#
|
| 42 |
try:
|
| 43 |
-
agent =
|
| 44 |
except Exception as e:
|
| 45 |
-
print(f"Error instantiating agent: {e}")
|
| 46 |
return f"Error initializing agent: {e}", None
|
| 47 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 48 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 49 |
-
print(agent_code)
|
| 50 |
|
| 51 |
-
#
|
| 52 |
-
|
|
|
|
|
|
|
| 53 |
try:
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
questions_data =
|
| 57 |
-
if not questions_data:
|
| 58 |
-
print("Fetched questions list is empty.")
|
| 59 |
-
return "Fetched questions list is empty or invalid format.", None
|
| 60 |
-
print(f"Fetched {len(questions_data)} questions.")
|
| 61 |
-
except requests.exceptions.RequestException as e:
|
| 62 |
-
print(f"Error fetching questions: {e}")
|
| 63 |
-
return f"Error fetching questions: {e}", None
|
| 64 |
-
except requests.exceptions.JSONDecodeError as e:
|
| 65 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 66 |
-
print(f"Response text: {response.text[:500]}")
|
| 67 |
-
return f"Error decoding server response for questions: {e}", None
|
| 68 |
except Exception as e:
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
# 3. Run your Agent
|
| 73 |
results_log = []
|
| 74 |
answers_payload = []
|
| 75 |
-
|
| 76 |
for item in questions_data:
|
| 77 |
task_id = item.get("task_id")
|
| 78 |
question_text = item.get("question")
|
|
|
|
| 79 |
if not task_id or question_text is None:
|
| 80 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
| 81 |
continue
|
|
|
|
| 82 |
try:
|
| 83 |
-
|
| 84 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 85 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 86 |
except Exception as e:
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
if not answers_payload:
|
| 91 |
-
|
| 92 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 93 |
|
| 94 |
-
# 4. Prepare Submission
|
| 95 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 96 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 97 |
-
print(status_update)
|
| 98 |
|
| 99 |
-
#
|
| 100 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 101 |
try:
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
result_data =
|
| 105 |
final_status = (
|
| 106 |
f"Submission Successful!\n"
|
| 107 |
f"User: {result_data.get('username')}\n"
|
|
@@ -109,88 +215,37 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 109 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 110 |
f"Message: {result_data.get('message', 'No message received.')}"
|
| 111 |
)
|
| 112 |
-
|
| 113 |
-
results_df = pd.DataFrame(results_log)
|
| 114 |
-
return final_status, results_df
|
| 115 |
except requests.exceptions.HTTPError as e:
|
| 116 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
| 117 |
try:
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
status_message = f"Submission Failed: {error_detail}"
|
| 123 |
-
print(status_message)
|
| 124 |
-
results_df = pd.DataFrame(results_log)
|
| 125 |
-
return status_message, results_df
|
| 126 |
-
except requests.exceptions.Timeout:
|
| 127 |
-
status_message = "Submission Failed: The request timed out."
|
| 128 |
-
print(status_message)
|
| 129 |
-
results_df = pd.DataFrame(results_log)
|
| 130 |
-
return status_message, results_df
|
| 131 |
-
except requests.exceptions.RequestException as e:
|
| 132 |
-
status_message = f"Submission Failed: Network error - {e}"
|
| 133 |
-
print(status_message)
|
| 134 |
-
results_df = pd.DataFrame(results_log)
|
| 135 |
-
return status_message, results_df
|
| 136 |
except Exception as e:
|
| 137 |
-
|
| 138 |
-
print(status_message)
|
| 139 |
-
results_df = pd.DataFrame(results_log)
|
| 140 |
-
return status_message, results_df
|
| 141 |
|
| 142 |
|
| 143 |
-
#
|
|
|
|
|
|
|
| 144 |
with gr.Blocks() as demo:
|
| 145 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
|
|
|
| 146 |
gr.Markdown(
|
| 147 |
"""
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 153 |
-
|
| 154 |
-
---
|
| 155 |
-
**Disclaimers:**
|
| 156 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
| 158 |
"""
|
| 159 |
)
|
| 160 |
-
|
| 161 |
gr.LoginButton()
|
| 162 |
-
|
| 163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 164 |
-
|
| 165 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 166 |
-
# Removed max_rows=10 from DataFrame constructor
|
| 167 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 168 |
|
| 169 |
-
run_button.click(
|
| 170 |
-
fn=run_and_submit_all,
|
| 171 |
-
outputs=[status_output, results_table]
|
| 172 |
-
)
|
| 173 |
|
| 174 |
if __name__ == "__main__":
|
| 175 |
-
|
| 176 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 177 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
| 178 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
| 179 |
-
|
| 180 |
-
if space_host_startup:
|
| 181 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 182 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 183 |
-
else:
|
| 184 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 185 |
-
|
| 186 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 187 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 188 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 189 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 190 |
-
else:
|
| 191 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 192 |
-
|
| 193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 194 |
-
|
| 195 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 196 |
-
demo.launch(debug=True, share=False)
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
+
import time
|
| 6 |
+
from typing import Optional, List, Dict
|
| 7 |
|
| 8 |
+
# Optional: import openai (pip install openai)
|
| 9 |
+
import openai
|
| 10 |
+
|
| 11 |
+
# Constants
|
| 12 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 13 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
| 14 |
+
# Default model - you can change to "gpt-4o" or "gpt-4.1" if available
|
| 15 |
+
OPENAI_MODEL = os.getenv("OPENAI_MODEL", "gpt-4o") # or "gpt-4.1"
|
| 16 |
+
|
| 17 |
+
if not OPENAI_API_KEY:
|
| 18 |
+
print("WARNING: OPENAI_API_KEY not set. Set it in Space secrets before running.")
|
| 19 |
+
|
| 20 |
+
openai.api_key = OPENAI_API_KEY
|
| 21 |
|
| 22 |
+
# -----------------------------
|
| 23 |
+
# Agent implementation (OpenAI-based)
|
| 24 |
+
# -----------------------------
|
| 25 |
+
class OpenAIAgent:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
"""
|
| 27 |
+
Minimal agent that uses OpenAI chat completion to answer each question.
|
| 28 |
+
It is tuned to return *only* the final answer (no extra commentary) so
|
| 29 |
+
that it matches the EXACT-MATCH submission requirement.
|
| 30 |
"""
|
| 31 |
+
|
| 32 |
+
def __init__(self, model: str = OPENAI_MODEL, temperature: float = 0.0):
|
| 33 |
+
self.model = model
|
| 34 |
+
self.temperature = temperature
|
| 35 |
+
|
| 36 |
+
def _build_prompt_messages(self, question_text: str, file_summaries: Optional[List[str]] = None) -> List[Dict]:
|
| 37 |
+
"""
|
| 38 |
+
Build messages for chat completion. We instruct the model to output
|
| 39 |
+
the answer ONLY (single-line), nothing else. No 'Final Answer' phrase.
|
| 40 |
+
"""
|
| 41 |
+
system = (
|
| 42 |
+
"You are an assistant that MUST produce a single concise answer only. "
|
| 43 |
+
"When asked a question, respond with the exact answer text only — nothing else. "
|
| 44 |
+
"Do NOT include explanation, reasoning steps, or any extra punctuation beyond the answer. "
|
| 45 |
+
"If the question requires a short phrase or number, output that. "
|
| 46 |
+
"If you do not know, output 'I don't know'."
|
| 47 |
+
)
|
| 48 |
+
user_parts = [f"Question: {question_text}"]
|
| 49 |
+
if file_summaries:
|
| 50 |
+
# attach file summaries if provided
|
| 51 |
+
user_parts.append("File summaries (use these to answer):")
|
| 52 |
+
user_parts.extend(file_summaries)
|
| 53 |
+
|
| 54 |
+
user = "\n".join(user_parts)
|
| 55 |
+
return [
|
| 56 |
+
{"role": "system", "content": system},
|
| 57 |
+
{"role": "user", "content": user},
|
| 58 |
+
]
|
| 59 |
+
|
| 60 |
+
def _call_openai(self, messages: List[Dict], max_tokens: int = 60) -> str:
|
| 61 |
+
"""
|
| 62 |
+
Call OpenAI ChatCompletion API (supports gpt-4o / gpt-4.1). Return assistant text.
|
| 63 |
+
"""
|
| 64 |
+
if not OPENAI_API_KEY:
|
| 65 |
+
raise RuntimeError("OPENAI_API_KEY not set in environment.")
|
| 66 |
+
|
| 67 |
+
try:
|
| 68 |
+
response = openai.ChatCompletion.create(
|
| 69 |
+
model=self.model,
|
| 70 |
+
messages=messages,
|
| 71 |
+
temperature=self.temperature,
|
| 72 |
+
max_tokens=max_tokens,
|
| 73 |
+
top_p=1.0,
|
| 74 |
+
n=1,
|
| 75 |
+
)
|
| 76 |
+
# Extract text (handles typical response structure)
|
| 77 |
+
text = ""
|
| 78 |
+
# openai returns choices list with message
|
| 79 |
+
choices = response.get("choices", [])
|
| 80 |
+
if choices and "message" in choices[0]:
|
| 81 |
+
text = choices[0]["message"].get("content", "")
|
| 82 |
+
else:
|
| 83 |
+
# fallback for older/newer SDK response shapes
|
| 84 |
+
text = response["choices"][0]["text"]
|
| 85 |
+
# trim
|
| 86 |
+
return text.strip()
|
| 87 |
+
except Exception as e:
|
| 88 |
+
# bubble up informative exception for logging
|
| 89 |
+
raise RuntimeError(f"OpenAI API error: {e}")
|
| 90 |
+
|
| 91 |
+
def summarize_file(self, file_url: str) -> Optional[str]:
|
| 92 |
+
"""
|
| 93 |
+
Simple downloader + summarizer placeholder.
|
| 94 |
+
For text files, fetch content and truncate. For images or other binary files,
|
| 95 |
+
just return a placeholder note (could be extended).
|
| 96 |
+
"""
|
| 97 |
+
try:
|
| 98 |
+
r = requests.get(file_url, timeout=10)
|
| 99 |
+
r.raise_for_status()
|
| 100 |
+
content_type = r.headers.get("Content-Type", "")
|
| 101 |
+
if "text" in content_type or file_url.lower().endswith((".txt", ".md", ".csv")):
|
| 102 |
+
text = r.text
|
| 103 |
+
# keep first 1000 chars to avoid huge prompts
|
| 104 |
+
summary = text[:1000].replace("\n", " ")
|
| 105 |
+
return f"[file content preview] {summary}"
|
| 106 |
+
else:
|
| 107 |
+
# For non-text file, just inform the model of the file name
|
| 108 |
+
return f"[file] downloaded from {file_url} (type: {content_type})"
|
| 109 |
+
except Exception as e:
|
| 110 |
+
print(f"Warning: Unable to fetch or summarize file {file_url}: {e}")
|
| 111 |
+
return None
|
| 112 |
+
|
| 113 |
+
def answer(self, question_text: str, files: Optional[List[str]] = None) -> str:
|
| 114 |
+
"""
|
| 115 |
+
Main entry: prepare prompt, call model, and return answer string.
|
| 116 |
+
Ensures we strip quotes/newlines to produce a concise single-line answer.
|
| 117 |
+
"""
|
| 118 |
+
file_summaries = []
|
| 119 |
+
if files:
|
| 120 |
+
for furl in files:
|
| 121 |
+
s = self.summarize_file(furl)
|
| 122 |
+
if s:
|
| 123 |
+
file_summaries.append(s)
|
| 124 |
+
|
| 125 |
+
messages = self._build_prompt_messages(question_text, file_summaries if file_summaries else None)
|
| 126 |
+
|
| 127 |
+
raw = self._call_openai(messages, max_tokens=80)
|
| 128 |
+
# Post-process: keep single-line, strip surrounding quotes, remove trailing punctuation if it's just noise
|
| 129 |
+
ans = " ".join(raw.splitlines()).strip()
|
| 130 |
+
# remove wrapping quotes
|
| 131 |
+
if (ans.startswith('"') and ans.endswith('"')) or (ans.startswith("'") and ans.endswith("'")):
|
| 132 |
+
ans = ans[1:-1].strip()
|
| 133 |
+
# final safety: if empty, return "I don't know"
|
| 134 |
+
if not ans:
|
| 135 |
+
ans = "I don't know"
|
| 136 |
+
return ans
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
# -----------------------------
|
| 140 |
+
# Runner / UI glue (kept similar to original)
|
| 141 |
+
# -----------------------------
|
| 142 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 143 |
+
"""
|
| 144 |
+
Fetches all questions, runs the OpenAIAgent on them, submits all answers,
|
| 145 |
+
and returns status string and results DataFrame.
|
| 146 |
+
"""
|
| 147 |
+
space_id = os.getenv("SPACE_ID")
|
| 148 |
|
| 149 |
if profile:
|
| 150 |
+
username = f"{profile.username}"
|
|
|
|
| 151 |
else:
|
|
|
|
| 152 |
return "Please Login to Hugging Face with the button.", None
|
| 153 |
|
| 154 |
api_url = DEFAULT_API_URL
|
| 155 |
questions_url = f"{api_url}/questions"
|
| 156 |
submit_url = f"{api_url}/submit"
|
| 157 |
|
| 158 |
+
# instantiate agent
|
| 159 |
try:
|
| 160 |
+
agent = OpenAIAgent()
|
| 161 |
except Exception as e:
|
|
|
|
| 162 |
return f"Error initializing agent: {e}", None
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
+
# agent_code repo URL
|
| 165 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else ""
|
| 166 |
+
|
| 167 |
+
# fetch questions
|
| 168 |
try:
|
| 169 |
+
resp = requests.get(questions_url, timeout=15)
|
| 170 |
+
resp.raise_for_status()
|
| 171 |
+
questions_data = resp.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
except Exception as e:
|
| 173 |
+
return f"Error fetching questions: {e}", None
|
| 174 |
+
|
| 175 |
+
if not questions_data:
|
| 176 |
+
return "No questions returned from server.", None
|
| 177 |
|
|
|
|
| 178 |
results_log = []
|
| 179 |
answers_payload = []
|
| 180 |
+
|
| 181 |
for item in questions_data:
|
| 182 |
task_id = item.get("task_id")
|
| 183 |
question_text = item.get("question")
|
| 184 |
+
files = item.get("files") or []
|
| 185 |
if not task_id or question_text is None:
|
|
|
|
| 186 |
continue
|
| 187 |
+
|
| 188 |
try:
|
| 189 |
+
ans = agent.answer(question_text, files)
|
|
|
|
|
|
|
| 190 |
except Exception as e:
|
| 191 |
+
ans = "I don't know"
|
| 192 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 193 |
+
else:
|
| 194 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": ans})
|
| 195 |
+
|
| 196 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": ans})
|
| 197 |
+
|
| 198 |
+
# small sleep to avoid rate limits
|
| 199 |
+
time.sleep(0.5)
|
| 200 |
|
| 201 |
if not answers_payload:
|
| 202 |
+
return "Agent produced no answers.", pd.DataFrame(results_log)
|
|
|
|
| 203 |
|
|
|
|
| 204 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
|
|
|
|
| 205 |
|
| 206 |
+
# submit
|
|
|
|
| 207 |
try:
|
| 208 |
+
r = requests.post(submit_url, json=submission_data, timeout=60)
|
| 209 |
+
r.raise_for_status()
|
| 210 |
+
result_data = r.json()
|
| 211 |
final_status = (
|
| 212 |
f"Submission Successful!\n"
|
| 213 |
f"User: {result_data.get('username')}\n"
|
|
|
|
| 215 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 216 |
f"Message: {result_data.get('message', 'No message received.')}"
|
| 217 |
)
|
| 218 |
+
return final_status, pd.DataFrame(results_log)
|
|
|
|
|
|
|
| 219 |
except requests.exceptions.HTTPError as e:
|
|
|
|
| 220 |
try:
|
| 221 |
+
text = e.response.text
|
| 222 |
+
except:
|
| 223 |
+
text = str(e)
|
| 224 |
+
return f"Submission failed: {text}", pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
except Exception as e:
|
| 226 |
+
return f"Submission failed: {e}", pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
|
| 229 |
+
# -----------------------------
|
| 230 |
+
# Build Gradio Interface
|
| 231 |
+
# -----------------------------
|
| 232 |
with gr.Blocks() as demo:
|
| 233 |
+
gr.Markdown("# Basic Agent Evaluation Runner (OpenAI-based)")
|
| 234 |
+
|
| 235 |
gr.Markdown(
|
| 236 |
"""
|
| 237 |
+
Instructions:
|
| 238 |
+
1. Add your OpenAI key as a secret named `OPENAI_API_KEY` in this Space.
|
| 239 |
+
2. Ensure requirements.txt contains `openai`.
|
| 240 |
+
3. Login, then click 'Run Evaluation & Submit All Answers'.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
"""
|
| 242 |
)
|
|
|
|
| 243 |
gr.LoginButton()
|
|
|
|
| 244 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
|
| 245 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
|
| 246 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 247 |
|
| 248 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
if __name__ == "__main__":
|
| 251 |
+
demo.launch(debug=True, share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|