Spaces:
Sleeping
Sleeping
File size: 7,295 Bytes
cbb33e1 0552d2e 4063c0b b945fc7 cbb33e1 2b1f3cb 766b563 dab8605 846b9e4 2b1f3cb 748afe9 0552d2e 766b563 cbb33e1 766b563 4063c0b 0552d2e 766b563 cbb33e1 748afe9 cbb33e1 748afe9 cbb33e1 766b563 1a22ce7 dab8605 41b31c2 cbb33e1 2b1f3cb 8b7fffb 41b31c2 748afe9 0552d2e 766b563 cbb33e1 766b563 748afe9 b945fc7 766b563 cbb33e1 766b563 748afe9 3ab22fd 748afe9 dab8605 748afe9 dab8605 748afe9 dab8605 766b563 cbb33e1 766b563 ff2254b b945fc7 ff2254b b945fc7 ff2254b cbb33e1 f7f10e3 cbb33e1 b945fc7 cbb33e1 f9dc634 8b7fffb 2b1f3cb 8b7fffb 846b9e4 cbb33e1 8b7fffb cbb33e1 846b9e4 8b7fffb 846b9e4 cbb33e1 1a22ce7 846b9e4 f7f10e3 b945fc7 cbb33e1 f7f10e3 2b1f3cb cbb33e1 2b1f3cb b945fc7 cbb33e1 b945fc7 cbb33e1 b945fc7 cbb33e1 f7f10e3 cbb33e1 f7f10e3 b945fc7 cbb33e1 b945fc7 cbb33e1 b945fc7 2b1f3cb cbb33e1 3eaa8aa 766b563 cbb33e1 730cf2c 0552d2e cbb33e1 41b31c2 2b1f3cb 846b9e4 0552d2e dab8605 41b31c2 846b9e4 0552d2e dab8605 41b31c2 846b9e4 0552d2e 766b563 41b31c2 846b9e4 748afe9 8a7b78f ff2254b 8a7b78f cbb33e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# ============================================
# AgriCopilot AI Backend — Optimized Stable Release
# ============================================
import os
import logging
import io
import torch
from fastapi import FastAPI, Request, Header, HTTPException, UploadFile, File
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from transformers import pipeline
from PIL import Image
from vector import query_vector
# ==============================
# Logging Setup
# ==============================
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("AgriCopilot")
# ==============================
# FastAPI App Init
# ==============================
app = FastAPI(title="AgriCopilot")
@app.get("/")
async def root():
return {"status": "✅ AgriCopilot AI Backend is running and stable."}
# ==============================
# Auth Config
# ==============================
PROJECT_API_KEY = os.getenv("PROJECT_API_KEY", "agricopilot404")
def check_auth(authorization: str | None):
"""Verifies Bearer token for all requests."""
if not PROJECT_API_KEY:
return
if not authorization or not authorization.startswith("Bearer "):
raise HTTPException(status_code=401, detail="Missing bearer token")
token = authorization.split(" ", 1)[1]
if token != PROJECT_API_KEY:
raise HTTPException(status_code=403, detail="Invalid token")
# ==============================
# Exception Handler
# ==============================
@app.exception_handler(Exception)
async def global_exception_handler(request: Request, exc: Exception):
logger.error(f"Unhandled error: {exc}")
return JSONResponse(status_code=500, content={"error": str(exc)})
# ==============================
# Request Schemas
# ==============================
class ChatRequest(BaseModel):
query: str
class DisasterRequest(BaseModel):
report: str
class MarketRequest(BaseModel):
product: str
class VectorRequest(BaseModel):
query: str
# ==============================
# Hugging Face Config
# ==============================
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if not HF_TOKEN:
logger.warning("⚠️ No Hugging Face token found. Gated models may fail to load.")
else:
logger.info("✅ Hugging Face token detected.")
# Device setup (GPU if available)
device = 0 if torch.cuda.is_available() else -1
logger.info(f"🧠 Using device: {'GPU' if device == 0 else 'CPU'}")
# ==============================
# Pipelines
# ==============================
# Conversational + reasoning models (Meta LLaMA)
chat_pipe = pipeline(
"text-generation",
model="meta-llama/Llama-3.1-8B-Instruct",
token=HF_TOKEN,
device=device,
)
disaster_pipe = pipeline(
"text-generation",
model="meta-llama/Llama-3.1-8B-Instruct",
token=HF_TOKEN,
device=device,
)
market_pipe = pipeline(
"text-generation",
model="meta-llama/Llama-3.1-8B-Instruct",
token=HF_TOKEN,
device=device,
)
# Lightweight Meta Vision backbone (ConvNeXt-Tiny)
crop_vision = pipeline(
"image-classification",
model="facebook/convnext-tiny-224",
token=HF_TOKEN,
device=device,
)
# ==============================
# Helper Functions
# ==============================
def run_conversational(pipe, prompt: str):
"""Handles conversational tasks safely."""
try:
output = pipe(prompt, max_new_tokens=200, temperature=0.7, do_sample=True)
if isinstance(output, list) and len(output) > 0:
return output[0].get("generated_text", str(output))
return str(output)
except Exception as e:
logger.error(f"Conversational pipeline error: {e}")
return f"⚠️ Model error: {str(e)}"
def run_crop_doctor(image_bytes: bytes, symptoms: str):
"""
Hybrid Crop Doctor System:
1. Uses ConvNeXt to classify plant visuals.
2. Pulls related info from vector dataset.
3. LLaMA 3.1 generates a short diagnosis and treatment guide.
"""
try:
# --- Step 1: Vision Classification ---
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
vision_results = crop_vision(image)
if not vision_results or "label" not in vision_results[0]:
raise ValueError("No vision classification result received.")
top_label = vision_results[0]["label"]
# --- Step 2: Vector Knowledge Recall ---
vector_matches = query_vector(symptoms)
related_knowledge = " ".join(vector_matches[:3]) if isinstance(vector_matches, list) else str(vector_matches)
# --- Step 3: Reasoning via LLaMA ---
prompt = (
f"A farmer uploaded a maize image showing signs of '{top_label}'. "
f"Reported symptoms: {symptoms}. "
f"Knowledge base reference: {related_knowledge}. "
"Generate a structured diagnostic report with:\n"
"1. Disease Name\n2. Cause\n3. Treatment\n4. Prevention Tips\n"
"Keep the explanation short and easy for farmers to understand."
)
response = chat_pipe(prompt, max_new_tokens=250, temperature=0.6, do_sample=False, truncation=True)
# Extract text output
if isinstance(response, list) and len(response) > 0:
text = response[0].get("generated_text", "").strip()
return text if text else "⚠️ No response generated. Try again with clearer image or symptoms."
return "⚠️ Unexpected response format from reasoning model."
except Exception as e:
logger.error(f"Crop Doctor error: {e}")
return f"⚠️ Crop Doctor encountered an issue: {str(e)}"
# ==============================
# Endpoints
# ==============================
@app.post("/crop-doctor")
async def crop_doctor(
symptoms: str = Header(...),
image: UploadFile = File(...),
authorization: str | None = Header(None)
):
"""Diagnose crop disease from image and text."""
check_auth(authorization)
image_bytes = await image.read()
diagnosis = run_crop_doctor(image_bytes, symptoms)
return {"diagnosis": diagnosis}
@app.post("/multilingual-chat")
async def multilingual_chat(req: ChatRequest, authorization: str | None = Header(None)):
check_auth(authorization)
reply = run_conversational(chat_pipe, req.query)
return {"reply": reply}
@app.post("/disaster-summarizer")
async def disaster_summarizer(req: DisasterRequest, authorization: str | None = Header(None)):
check_auth(authorization)
summary = run_conversational(disaster_pipe, req.report)
return {"summary": summary}
@app.post("/marketplace")
async def marketplace(req: MarketRequest, authorization: str | None = Header(None)):
check_auth(authorization)
recommendation = run_conversational(market_pipe, req.product)
return {"recommendation": recommendation}
@app.post("/vector-search")
async def vector_search(req: VectorRequest, authorization: str | None = Header(None)):
check_auth(authorization)
try:
results = query_vector(req.query)
return {"results": results}
except Exception as e:
logger.error(f"Vector search error: {e}")
return {"error": f"Vector search error: {str(e)}"}
# ============================================
# END OF FILE
# ============================================
|