Spaces:
Build error
Build error
Initial test
Browse files- .gitattributes +1 -0
- .gitignore +2 -0
- .gitmodules +3 -0
- app.py +51 -0
- image_inference.py +98 -0
- inference/centernet_config.py +290 -0
- inference/detr_config.py +542 -0
- inference/fasterrcnn_config.py +372 -0
- inference/models/centernetbest.pth +3 -0
- inference/models/detrbest.pth +3 -0
- inference/models/fasterrcnnbest.pth +3 -0
- inference/models/retinanetbest.pth +3 -0
- inference/models/rtmdetbest.pth +3 -0
- inference/models/ssdbest.pth +3 -0
- inference/models/yolov5best.pt +3 -0
- inference/models/yolov8best.pt +3 -0
- inference/retinanet_config.py +343 -0
- inference/rtmdet_config.py +562 -0
- inference/ssd_config.py +450 -0
- requirements.txt +262 -0
- utils.py +153 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
inptest.jpg filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
| 2 |
+
**/*.jpg
|
.gitmodules
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[submodule "yolov5"]
|
| 2 |
+
path = yolov5
|
| 3 |
+
url = https://github.com/ultralytics/yolov5
|
app.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from glob import glob
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from ultralytics import YOLO
|
| 4 |
+
from utils import draw_bbox
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import numpy as np
|
| 7 |
+
import subprocess
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
with gr.Blocks() as demo:
|
| 11 |
+
gr.Markdown("Detect planes demo.")
|
| 12 |
+
|
| 13 |
+
models=["SSD", "FasterRCNN", "CenterNet", "RetinaNet", "DETR", "RTMDET", "YOLOv5", "YOLOv8"]
|
| 14 |
+
|
| 15 |
+
with gr.Tab("Image"):
|
| 16 |
+
with gr.Row():
|
| 17 |
+
with gr.Column():
|
| 18 |
+
image_input_single = gr.Image()
|
| 19 |
+
image_output = gr.Image(visible = True)
|
| 20 |
+
with gr.Row():
|
| 21 |
+
drop = gr.Dropdown([m for m in models], label="Model selection", type ="index", value=models[0])
|
| 22 |
+
image_button = gr.Button("Detect", variant = 'primary')
|
| 23 |
+
with gr.Column(visible=True) as output_row:
|
| 24 |
+
object_count = gr.Textbox(value = 0,label="Aircrafts detected")
|
| 25 |
+
|
| 26 |
+
def runmodel(input_img, model_num):
|
| 27 |
+
Image.fromarray(input_img).save(source:="inptest.jpg")
|
| 28 |
+
print("Using model", model_name:=models[model_num])
|
| 29 |
+
|
| 30 |
+
conf = 0.3
|
| 31 |
+
|
| 32 |
+
if model_name in models[:-2]:
|
| 33 |
+
cmd = f"python3 image_inference.py {source} inference/{model_name.lower()}_config.py --weights inference/models/{model_name.lower()}best.pth --out-dir inference/results/{model_name.lower()}_inference --pred-score-thr {conf}"
|
| 34 |
+
subprocess.run(cmd, shell=True)
|
| 35 |
+
im, count = draw_bbox(model_name.lower())
|
| 36 |
+
|
| 37 |
+
if model_name == "YOLOv5":
|
| 38 |
+
cmd = f"python3 yolov5/detect.py --weights inference/models/yolov5best.pt --source {source} --save-txt --save-conf --project inference/results/yolov5_inference --name predict"
|
| 39 |
+
subprocess.run(cmd, shell=True)
|
| 40 |
+
im, count = draw_bbox(model_name.lower())
|
| 41 |
+
|
| 42 |
+
if model_name == "YOLOv8":
|
| 43 |
+
model = YOLO('inference/models/yolov8best.pt')
|
| 44 |
+
results = model(source, imgsz=1024, conf = conf, save_txt = True, save_conf = True, save = True, project = "inference/results/yolov8_inference")
|
| 45 |
+
im, count = draw_bbox(model_name.lower())
|
| 46 |
+
|
| 47 |
+
return im, count
|
| 48 |
+
|
| 49 |
+
image_button.click(runmodel, inputs=[image_input_single, drop], outputs=[image_output, object_count])
|
| 50 |
+
|
| 51 |
+
demo.launch()
|
image_inference.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from argparse import ArgumentParser
|
| 2 |
+
|
| 3 |
+
from mmengine.logging import print_log
|
| 4 |
+
|
| 5 |
+
from mmdet.apis import DetInferencer
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def parse_args():
|
| 9 |
+
parser = ArgumentParser()
|
| 10 |
+
parser.add_argument(
|
| 11 |
+
'inputs', type=str, help='Input image file or folder path.')
|
| 12 |
+
parser.add_argument(
|
| 13 |
+
'model',
|
| 14 |
+
type=str,
|
| 15 |
+
help='Config or checkpoint .pth file or the model name '
|
| 16 |
+
'and alias defined in metafile. The model configuration '
|
| 17 |
+
'file will try to read from .pth if the parameter is '
|
| 18 |
+
'a .pth weights file.')
|
| 19 |
+
parser.add_argument('--weights', default=None, help='Checkpoint file')
|
| 20 |
+
parser.add_argument(
|
| 21 |
+
'--out-dir',
|
| 22 |
+
type=str,
|
| 23 |
+
default='outputs',
|
| 24 |
+
help='Output directory of images or prediction results.')
|
| 25 |
+
parser.add_argument('--texts', help='text prompt')
|
| 26 |
+
parser.add_argument(
|
| 27 |
+
'--device', default='cuda:0', help='Device used for inference')
|
| 28 |
+
parser.add_argument(
|
| 29 |
+
'--pred-score-thr',
|
| 30 |
+
type=float,
|
| 31 |
+
default=0.3,
|
| 32 |
+
help='bbox score threshold')
|
| 33 |
+
parser.add_argument(
|
| 34 |
+
'--batch-size', type=int, default=1, help='Inference batch size.')
|
| 35 |
+
parser.add_argument(
|
| 36 |
+
'--show',
|
| 37 |
+
action='store_true',
|
| 38 |
+
help='Display the image in a popup window.')
|
| 39 |
+
parser.add_argument(
|
| 40 |
+
'--no-save-vis',
|
| 41 |
+
action='store_true',
|
| 42 |
+
help='Do not save detection vis results')
|
| 43 |
+
parser.add_argument(
|
| 44 |
+
'--no-save-pred',
|
| 45 |
+
action='store_true',
|
| 46 |
+
help='Do not save detection json results')
|
| 47 |
+
parser.add_argument(
|
| 48 |
+
'--print-result',
|
| 49 |
+
action='store_true',
|
| 50 |
+
help='Whether to print the results.')
|
| 51 |
+
parser.add_argument(
|
| 52 |
+
'--palette',
|
| 53 |
+
default='none',
|
| 54 |
+
choices=['coco', 'voc', 'citys', 'random', 'none'],
|
| 55 |
+
help='Color palette used for visualization')
|
| 56 |
+
# only for GLIP
|
| 57 |
+
parser.add_argument(
|
| 58 |
+
'--custom-entities',
|
| 59 |
+
'-c',
|
| 60 |
+
action='store_true',
|
| 61 |
+
help='Whether to customize entity names? '
|
| 62 |
+
'If so, the input text should be '
|
| 63 |
+
'"cls_name1 . cls_name2 . cls_name3 ." format')
|
| 64 |
+
|
| 65 |
+
call_args = vars(parser.parse_args())
|
| 66 |
+
|
| 67 |
+
if call_args['no_save_vis'] and call_args['no_save_pred']:
|
| 68 |
+
call_args['out_dir'] = ''
|
| 69 |
+
|
| 70 |
+
if call_args['model'].endswith('.pth'):
|
| 71 |
+
print_log('The model is a weight file, automatically '
|
| 72 |
+
'assign the model to --weights')
|
| 73 |
+
call_args['weights'] = call_args['model']
|
| 74 |
+
call_args['model'] = None
|
| 75 |
+
|
| 76 |
+
init_kws = ['model', 'weights', 'device', 'palette']
|
| 77 |
+
init_args = {}
|
| 78 |
+
for init_kw in init_kws:
|
| 79 |
+
init_args[init_kw] = call_args.pop(init_kw)
|
| 80 |
+
|
| 81 |
+
return init_args, call_args
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def main():
|
| 85 |
+
init_args, call_args = parse_args()
|
| 86 |
+
# TODO: Video and Webcam are currently not supported and
|
| 87 |
+
# may consume too much memory if your input folder has a lot of images.
|
| 88 |
+
# We will be optimized later.
|
| 89 |
+
inferencer = DetInferencer(**init_args)
|
| 90 |
+
inferencer(**call_args)
|
| 91 |
+
|
| 92 |
+
if call_args['out_dir'] != '' and not (call_args['no_save_vis']
|
| 93 |
+
and call_args['no_save_pred']):
|
| 94 |
+
print_log(f'Results have been saved at {call_args["out_dir"]}')
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
if __name__ == '__main__':
|
| 98 |
+
main()
|
inference/centernet_config.py
ADDED
|
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
dataset_type = 'CocoDataset'
|
| 2 |
+
data_root = '/home/safouane/Downloads/benchmark_aircraft/data/' # dataset root
|
| 3 |
+
backend_args = None
|
| 4 |
+
|
| 5 |
+
max_epochs = 500
|
| 6 |
+
|
| 7 |
+
metainfo = {
|
| 8 |
+
'classes': ('airplane', ),
|
| 9 |
+
'palette': [
|
| 10 |
+
(0, 128, 255),
|
| 11 |
+
]
|
| 12 |
+
}
|
| 13 |
+
num_classes = 1
|
| 14 |
+
|
| 15 |
+
train_pipeline = [
|
| 16 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 17 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 18 |
+
dict(
|
| 19 |
+
type='RandomChoiceResize',
|
| 20 |
+
scales=[
|
| 21 |
+
( 1333, 640, ),
|
| 22 |
+
( 1333, 672, ),
|
| 23 |
+
( 1333, 704, ),
|
| 24 |
+
( 1333, 736, ),
|
| 25 |
+
( 1333, 768, ),
|
| 26 |
+
( 1333, 800, ),
|
| 27 |
+
],
|
| 28 |
+
keep_ratio=True),
|
| 29 |
+
dict(type='RandomFlip', prob=0.5),
|
| 30 |
+
dict(type='PackDetInputs'),
|
| 31 |
+
]
|
| 32 |
+
test_pipeline = [
|
| 33 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 34 |
+
dict(type='Resize', scale=(
|
| 35 |
+
1333,
|
| 36 |
+
800,
|
| 37 |
+
), keep_ratio=True),
|
| 38 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 39 |
+
dict(
|
| 40 |
+
type='PackDetInputs',
|
| 41 |
+
meta_keys=(
|
| 42 |
+
'img_id',
|
| 43 |
+
'img_path',
|
| 44 |
+
'ori_shape',
|
| 45 |
+
'img_shape',
|
| 46 |
+
'scale_factor',
|
| 47 |
+
)),
|
| 48 |
+
]
|
| 49 |
+
train_dataloader = dict(
|
| 50 |
+
batch_size=32,
|
| 51 |
+
num_workers=2,
|
| 52 |
+
persistent_workers=True,
|
| 53 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
| 54 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
| 55 |
+
dataset=dict(
|
| 56 |
+
type='CocoDataset',
|
| 57 |
+
metainfo=metainfo,
|
| 58 |
+
data_root=data_root,
|
| 59 |
+
ann_file='train/__coco.json',
|
| 60 |
+
data_prefix=dict(img='train/'),
|
| 61 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
| 62 |
+
pipeline=[
|
| 63 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 64 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 65 |
+
dict(
|
| 66 |
+
type='RandomChoiceResize',
|
| 67 |
+
scales=[
|
| 68 |
+
( 1333, 640, ),
|
| 69 |
+
( 1333, 672, ),
|
| 70 |
+
( 1333, 704, ),
|
| 71 |
+
( 1333, 736, ),
|
| 72 |
+
( 1333, 768, ),
|
| 73 |
+
( 1333, 800, ),
|
| 74 |
+
],
|
| 75 |
+
keep_ratio=True),
|
| 76 |
+
dict(type='RandomFlip', prob=0.5),
|
| 77 |
+
dict(type='PackDetInputs'),
|
| 78 |
+
],
|
| 79 |
+
backend_args=None))
|
| 80 |
+
val_dataloader = dict(
|
| 81 |
+
batch_size=32,
|
| 82 |
+
num_workers=2,
|
| 83 |
+
persistent_workers=True,
|
| 84 |
+
drop_last=False,
|
| 85 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 86 |
+
dataset=dict(
|
| 87 |
+
type='CocoDataset',
|
| 88 |
+
metainfo=metainfo,
|
| 89 |
+
data_root=data_root,
|
| 90 |
+
ann_file='val/__coco.json',
|
| 91 |
+
data_prefix=dict(img='val/'),
|
| 92 |
+
test_mode=True,
|
| 93 |
+
pipeline=[
|
| 94 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 95 |
+
dict(type='Resize', scale=(
|
| 96 |
+
1333,
|
| 97 |
+
800,
|
| 98 |
+
), keep_ratio=True),
|
| 99 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 100 |
+
dict(
|
| 101 |
+
type='PackDetInputs',
|
| 102 |
+
meta_keys=(
|
| 103 |
+
'img_id',
|
| 104 |
+
'img_path',
|
| 105 |
+
'ori_shape',
|
| 106 |
+
'img_shape',
|
| 107 |
+
'scale_factor',
|
| 108 |
+
)),
|
| 109 |
+
],
|
| 110 |
+
backend_args=None))
|
| 111 |
+
test_dataloader = dict(
|
| 112 |
+
batch_size=32,
|
| 113 |
+
num_workers=2,
|
| 114 |
+
persistent_workers=True,
|
| 115 |
+
drop_last=False,
|
| 116 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 117 |
+
dataset=dict(
|
| 118 |
+
type='CocoDataset',
|
| 119 |
+
metainfo=metainfo,
|
| 120 |
+
data_root=data_root,
|
| 121 |
+
ann_file='test/__coco.json',
|
| 122 |
+
data_prefix=dict(img='test/'),
|
| 123 |
+
test_mode=True,
|
| 124 |
+
pipeline=[
|
| 125 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 126 |
+
dict(type='Resize', scale=(
|
| 127 |
+
1333,
|
| 128 |
+
800,
|
| 129 |
+
), keep_ratio=True),
|
| 130 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 131 |
+
dict(
|
| 132 |
+
type='PackDetInputs',
|
| 133 |
+
meta_keys=(
|
| 134 |
+
'img_id',
|
| 135 |
+
'img_path',
|
| 136 |
+
'ori_shape',
|
| 137 |
+
'img_shape',
|
| 138 |
+
'scale_factor',
|
| 139 |
+
)),
|
| 140 |
+
],
|
| 141 |
+
backend_args=None))
|
| 142 |
+
val_evaluator = dict(
|
| 143 |
+
type='CocoMetric',
|
| 144 |
+
ann_file=data_root + 'val/__coco.json',
|
| 145 |
+
metric='bbox',
|
| 146 |
+
format_only=False,
|
| 147 |
+
backend_args=None)
|
| 148 |
+
test_evaluator = dict(
|
| 149 |
+
type='CocoMetric',
|
| 150 |
+
ann_file=data_root + 'test/__coco.json',
|
| 151 |
+
metric='bbox',
|
| 152 |
+
format_only=False,
|
| 153 |
+
backend_args=None)
|
| 154 |
+
|
| 155 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=10)
|
| 156 |
+
val_cfg = dict(type='ValLoop')
|
| 157 |
+
test_cfg = dict(type='TestLoop')
|
| 158 |
+
param_scheduler = [
|
| 159 |
+
dict(
|
| 160 |
+
type='LinearLR',
|
| 161 |
+
start_factor=0.00025,
|
| 162 |
+
by_epoch=False,
|
| 163 |
+
begin=0,
|
| 164 |
+
end=4000),
|
| 165 |
+
dict(
|
| 166 |
+
type='MultiStepLR',
|
| 167 |
+
begin=0,
|
| 168 |
+
end=12,
|
| 169 |
+
by_epoch=True,
|
| 170 |
+
milestones=[
|
| 171 |
+
8,
|
| 172 |
+
11,
|
| 173 |
+
],
|
| 174 |
+
gamma=0.1),
|
| 175 |
+
]
|
| 176 |
+
optim_wrapper = dict(
|
| 177 |
+
type='OptimWrapper',
|
| 178 |
+
optimizer=dict(type='SGD', lr=0.015, momentum=0.9, weight_decay=0.0001),
|
| 179 |
+
paramwise_cfg=dict(norm_decay_mult=0.0))
|
| 180 |
+
auto_scale_lr = dict(enable=False, base_batch_size=32)
|
| 181 |
+
default_scope = 'mmdet'
|
| 182 |
+
default_hooks = dict(
|
| 183 |
+
timer=dict(type='IterTimerHook'),
|
| 184 |
+
logger=dict(type='LoggerHook', interval=5),
|
| 185 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
| 186 |
+
checkpoint=dict(
|
| 187 |
+
type='CheckpointHook',
|
| 188 |
+
interval=5,
|
| 189 |
+
max_keep_ckpts=2, # only keep latest 2 checkpoints
|
| 190 |
+
save_best='auto'
|
| 191 |
+
),
|
| 192 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
| 193 |
+
visualization=dict(type='DetVisualizationHook'))
|
| 194 |
+
env_cfg = dict(
|
| 195 |
+
cudnn_benchmark=False,
|
| 196 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
| 197 |
+
dist_cfg=dict(backend='nccl'))
|
| 198 |
+
vis_backends = [
|
| 199 |
+
dict(type='LocalVisBackend'),
|
| 200 |
+
]
|
| 201 |
+
visualizer = dict(
|
| 202 |
+
type='DetLocalVisualizer',
|
| 203 |
+
vis_backends=[
|
| 204 |
+
dict(type='LocalVisBackend'),
|
| 205 |
+
dict(type='TensorboardVisBackend'),
|
| 206 |
+
],
|
| 207 |
+
name='visualizer')
|
| 208 |
+
|
| 209 |
+
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
|
| 210 |
+
log_level = 'INFO'
|
| 211 |
+
load_from = None
|
| 212 |
+
resume = False
|
| 213 |
+
model = dict(
|
| 214 |
+
type='CenterNet',
|
| 215 |
+
data_preprocessor=dict(
|
| 216 |
+
type='DetDataPreprocessor',
|
| 217 |
+
mean=[
|
| 218 |
+
103.53,
|
| 219 |
+
116.28,
|
| 220 |
+
123.675,
|
| 221 |
+
],
|
| 222 |
+
std=[
|
| 223 |
+
1.0,
|
| 224 |
+
1.0,
|
| 225 |
+
1.0,
|
| 226 |
+
],
|
| 227 |
+
bgr_to_rgb=False,
|
| 228 |
+
pad_size_divisor=32),
|
| 229 |
+
backbone=dict(
|
| 230 |
+
type='ResNet',
|
| 231 |
+
depth=50,
|
| 232 |
+
num_stages=4,
|
| 233 |
+
out_indices=(
|
| 234 |
+
0,
|
| 235 |
+
1,
|
| 236 |
+
2,
|
| 237 |
+
3,
|
| 238 |
+
),
|
| 239 |
+
frozen_stages=1,
|
| 240 |
+
norm_cfg=dict(type='BN', requires_grad=False),
|
| 241 |
+
norm_eval=True,
|
| 242 |
+
style='caffe',
|
| 243 |
+
init_cfg=dict(
|
| 244 |
+
type='Pretrained',
|
| 245 |
+
checkpoint='open-mmlab://detectron2/resnet50_caffe')),
|
| 246 |
+
neck=dict(
|
| 247 |
+
type='FPN',
|
| 248 |
+
in_channels=[
|
| 249 |
+
256,
|
| 250 |
+
512,
|
| 251 |
+
1024,
|
| 252 |
+
2048,
|
| 253 |
+
],
|
| 254 |
+
out_channels=256,
|
| 255 |
+
start_level=1,
|
| 256 |
+
add_extra_convs='on_output',
|
| 257 |
+
num_outs=5,
|
| 258 |
+
init_cfg=dict(type='Caffe2Xavier', layer='Conv2d'),
|
| 259 |
+
relu_before_extra_convs=True),
|
| 260 |
+
bbox_head=dict(
|
| 261 |
+
type='CenterNetUpdateHead',
|
| 262 |
+
num_classes=num_classes,
|
| 263 |
+
in_channels=256,
|
| 264 |
+
stacked_convs=4,
|
| 265 |
+
feat_channels=256,
|
| 266 |
+
strides=[
|
| 267 |
+
8,
|
| 268 |
+
16,
|
| 269 |
+
32,
|
| 270 |
+
64,
|
| 271 |
+
128,
|
| 272 |
+
],
|
| 273 |
+
hm_min_radius=4,
|
| 274 |
+
hm_min_overlap=0.8,
|
| 275 |
+
more_pos_thresh=0.2,
|
| 276 |
+
more_pos_topk=9,
|
| 277 |
+
soft_weight_on_reg=False,
|
| 278 |
+
loss_cls=dict(
|
| 279 |
+
type='GaussianFocalLoss',
|
| 280 |
+
pos_weight=0.25,
|
| 281 |
+
neg_weight=0.75,
|
| 282 |
+
loss_weight=1.0),
|
| 283 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=2.0)),
|
| 284 |
+
train_cfg=None,
|
| 285 |
+
test_cfg=dict(
|
| 286 |
+
nms_pre=1000,
|
| 287 |
+
min_bbox_size=0,
|
| 288 |
+
score_thr=0.05,
|
| 289 |
+
nms=dict(type='nms', iou_threshold=0.6),
|
| 290 |
+
max_per_img=100))
|
inference/detr_config.py
ADDED
|
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
dataset_type = 'CocoDataset'
|
| 2 |
+
data_root = '/home/safouane/Downloads/benchmark_aircraft/data/'
|
| 3 |
+
backend_args = None
|
| 4 |
+
max_epochs = 500
|
| 5 |
+
metainfo = {
|
| 6 |
+
'classes': ('airplane', ),
|
| 7 |
+
'palette': [
|
| 8 |
+
(0, 128, 255),
|
| 9 |
+
]
|
| 10 |
+
}
|
| 11 |
+
num_classes = 1
|
| 12 |
+
train_pipeline = [
|
| 13 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 14 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 15 |
+
dict(type='RandomFlip', prob=0.5),
|
| 16 |
+
dict(
|
| 17 |
+
type='RandomChoice',
|
| 18 |
+
transforms=[
|
| 19 |
+
[
|
| 20 |
+
dict(
|
| 21 |
+
type='RandomChoiceResize',
|
| 22 |
+
scales=[
|
| 23 |
+
(
|
| 24 |
+
480,
|
| 25 |
+
1333,
|
| 26 |
+
),
|
| 27 |
+
(
|
| 28 |
+
512,
|
| 29 |
+
1333,
|
| 30 |
+
),
|
| 31 |
+
(
|
| 32 |
+
544,
|
| 33 |
+
1333,
|
| 34 |
+
),
|
| 35 |
+
(
|
| 36 |
+
576,
|
| 37 |
+
1333,
|
| 38 |
+
),
|
| 39 |
+
(
|
| 40 |
+
608,
|
| 41 |
+
1333,
|
| 42 |
+
),
|
| 43 |
+
(
|
| 44 |
+
640,
|
| 45 |
+
1333,
|
| 46 |
+
),
|
| 47 |
+
(
|
| 48 |
+
672,
|
| 49 |
+
1333,
|
| 50 |
+
),
|
| 51 |
+
(
|
| 52 |
+
704,
|
| 53 |
+
1333,
|
| 54 |
+
),
|
| 55 |
+
(
|
| 56 |
+
736,
|
| 57 |
+
1333,
|
| 58 |
+
),
|
| 59 |
+
(
|
| 60 |
+
768,
|
| 61 |
+
1333,
|
| 62 |
+
),
|
| 63 |
+
(
|
| 64 |
+
800,
|
| 65 |
+
1333,
|
| 66 |
+
),
|
| 67 |
+
],
|
| 68 |
+
keep_ratio=True),
|
| 69 |
+
],
|
| 70 |
+
[
|
| 71 |
+
dict(
|
| 72 |
+
type='RandomChoiceResize',
|
| 73 |
+
scales=[
|
| 74 |
+
(
|
| 75 |
+
400,
|
| 76 |
+
1333,
|
| 77 |
+
),
|
| 78 |
+
(
|
| 79 |
+
500,
|
| 80 |
+
1333,
|
| 81 |
+
),
|
| 82 |
+
(
|
| 83 |
+
600,
|
| 84 |
+
1333,
|
| 85 |
+
),
|
| 86 |
+
],
|
| 87 |
+
keep_ratio=True),
|
| 88 |
+
dict(
|
| 89 |
+
type='RandomCrop',
|
| 90 |
+
crop_type='absolute_range',
|
| 91 |
+
crop_size=(
|
| 92 |
+
384,
|
| 93 |
+
600,
|
| 94 |
+
),
|
| 95 |
+
allow_negative_crop=True),
|
| 96 |
+
dict(
|
| 97 |
+
type='RandomChoiceResize',
|
| 98 |
+
scales=[
|
| 99 |
+
(
|
| 100 |
+
480,
|
| 101 |
+
1333,
|
| 102 |
+
),
|
| 103 |
+
(
|
| 104 |
+
512,
|
| 105 |
+
1333,
|
| 106 |
+
),
|
| 107 |
+
(
|
| 108 |
+
544,
|
| 109 |
+
1333,
|
| 110 |
+
),
|
| 111 |
+
(
|
| 112 |
+
576,
|
| 113 |
+
1333,
|
| 114 |
+
),
|
| 115 |
+
(
|
| 116 |
+
608,
|
| 117 |
+
1333,
|
| 118 |
+
),
|
| 119 |
+
(
|
| 120 |
+
640,
|
| 121 |
+
1333,
|
| 122 |
+
),
|
| 123 |
+
(
|
| 124 |
+
672,
|
| 125 |
+
1333,
|
| 126 |
+
),
|
| 127 |
+
(
|
| 128 |
+
704,
|
| 129 |
+
1333,
|
| 130 |
+
),
|
| 131 |
+
(
|
| 132 |
+
736,
|
| 133 |
+
1333,
|
| 134 |
+
),
|
| 135 |
+
(
|
| 136 |
+
768,
|
| 137 |
+
1333,
|
| 138 |
+
),
|
| 139 |
+
(
|
| 140 |
+
800,
|
| 141 |
+
1333,
|
| 142 |
+
),
|
| 143 |
+
],
|
| 144 |
+
keep_ratio=True),
|
| 145 |
+
],
|
| 146 |
+
]),
|
| 147 |
+
dict(type='PackDetInputs'),
|
| 148 |
+
]
|
| 149 |
+
test_pipeline = [
|
| 150 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 151 |
+
dict(type='Resize', scale=(
|
| 152 |
+
1333,
|
| 153 |
+
800,
|
| 154 |
+
), keep_ratio=True),
|
| 155 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 156 |
+
dict(
|
| 157 |
+
type='PackDetInputs',
|
| 158 |
+
meta_keys=(
|
| 159 |
+
'img_id',
|
| 160 |
+
'img_path',
|
| 161 |
+
'ori_shape',
|
| 162 |
+
'img_shape',
|
| 163 |
+
'scale_factor',
|
| 164 |
+
)),
|
| 165 |
+
]
|
| 166 |
+
train_dataloader = dict(
|
| 167 |
+
batch_size=8,
|
| 168 |
+
num_workers=2,
|
| 169 |
+
persistent_workers=True,
|
| 170 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
| 171 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
| 172 |
+
dataset=dict(
|
| 173 |
+
type='CocoDataset',
|
| 174 |
+
metainfo=dict(classes=('airplane', ), palette=[
|
| 175 |
+
(
|
| 176 |
+
220,
|
| 177 |
+
20,
|
| 178 |
+
60,
|
| 179 |
+
),
|
| 180 |
+
]),
|
| 181 |
+
data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
|
| 182 |
+
ann_file='train/__coco.json',
|
| 183 |
+
data_prefix=dict(img='train/'),
|
| 184 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
| 185 |
+
pipeline=[
|
| 186 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 187 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 188 |
+
dict(type='RandomFlip', prob=0.5),
|
| 189 |
+
dict(
|
| 190 |
+
type='RandomChoice',
|
| 191 |
+
transforms=[
|
| 192 |
+
[
|
| 193 |
+
dict(
|
| 194 |
+
type='RandomChoiceResize',
|
| 195 |
+
scales=[
|
| 196 |
+
(
|
| 197 |
+
480,
|
| 198 |
+
1333,
|
| 199 |
+
),
|
| 200 |
+
(
|
| 201 |
+
512,
|
| 202 |
+
1333,
|
| 203 |
+
),
|
| 204 |
+
(
|
| 205 |
+
544,
|
| 206 |
+
1333,
|
| 207 |
+
),
|
| 208 |
+
(
|
| 209 |
+
576,
|
| 210 |
+
1333,
|
| 211 |
+
),
|
| 212 |
+
(
|
| 213 |
+
608,
|
| 214 |
+
1333,
|
| 215 |
+
),
|
| 216 |
+
(
|
| 217 |
+
640,
|
| 218 |
+
1333,
|
| 219 |
+
),
|
| 220 |
+
(
|
| 221 |
+
672,
|
| 222 |
+
1333,
|
| 223 |
+
),
|
| 224 |
+
(
|
| 225 |
+
704,
|
| 226 |
+
1333,
|
| 227 |
+
),
|
| 228 |
+
(
|
| 229 |
+
736,
|
| 230 |
+
1333,
|
| 231 |
+
),
|
| 232 |
+
(
|
| 233 |
+
768,
|
| 234 |
+
1333,
|
| 235 |
+
),
|
| 236 |
+
(
|
| 237 |
+
800,
|
| 238 |
+
1333,
|
| 239 |
+
),
|
| 240 |
+
],
|
| 241 |
+
keep_ratio=True),
|
| 242 |
+
],
|
| 243 |
+
[
|
| 244 |
+
dict(
|
| 245 |
+
type='RandomChoiceResize',
|
| 246 |
+
scales=[
|
| 247 |
+
(
|
| 248 |
+
400,
|
| 249 |
+
1333,
|
| 250 |
+
),
|
| 251 |
+
(
|
| 252 |
+
500,
|
| 253 |
+
1333,
|
| 254 |
+
),
|
| 255 |
+
(
|
| 256 |
+
600,
|
| 257 |
+
1333,
|
| 258 |
+
),
|
| 259 |
+
],
|
| 260 |
+
keep_ratio=True),
|
| 261 |
+
dict(
|
| 262 |
+
type='RandomCrop',
|
| 263 |
+
crop_type='absolute_range',
|
| 264 |
+
crop_size=(
|
| 265 |
+
384,
|
| 266 |
+
600,
|
| 267 |
+
),
|
| 268 |
+
allow_negative_crop=True),
|
| 269 |
+
dict(
|
| 270 |
+
type='RandomChoiceResize',
|
| 271 |
+
scales=[
|
| 272 |
+
(
|
| 273 |
+
480,
|
| 274 |
+
1333,
|
| 275 |
+
),
|
| 276 |
+
(
|
| 277 |
+
512,
|
| 278 |
+
1333,
|
| 279 |
+
),
|
| 280 |
+
(
|
| 281 |
+
544,
|
| 282 |
+
1333,
|
| 283 |
+
),
|
| 284 |
+
(
|
| 285 |
+
576,
|
| 286 |
+
1333,
|
| 287 |
+
),
|
| 288 |
+
(
|
| 289 |
+
608,
|
| 290 |
+
1333,
|
| 291 |
+
),
|
| 292 |
+
(
|
| 293 |
+
640,
|
| 294 |
+
1333,
|
| 295 |
+
),
|
| 296 |
+
(
|
| 297 |
+
672,
|
| 298 |
+
1333,
|
| 299 |
+
),
|
| 300 |
+
(
|
| 301 |
+
704,
|
| 302 |
+
1333,
|
| 303 |
+
),
|
| 304 |
+
(
|
| 305 |
+
736,
|
| 306 |
+
1333,
|
| 307 |
+
),
|
| 308 |
+
(
|
| 309 |
+
768,
|
| 310 |
+
1333,
|
| 311 |
+
),
|
| 312 |
+
(
|
| 313 |
+
800,
|
| 314 |
+
1333,
|
| 315 |
+
),
|
| 316 |
+
],
|
| 317 |
+
keep_ratio=True),
|
| 318 |
+
],
|
| 319 |
+
]),
|
| 320 |
+
dict(type='PackDetInputs'),
|
| 321 |
+
],
|
| 322 |
+
backend_args=None))
|
| 323 |
+
val_dataloader = dict(
|
| 324 |
+
batch_size=1,
|
| 325 |
+
num_workers=2,
|
| 326 |
+
persistent_workers=True,
|
| 327 |
+
drop_last=False,
|
| 328 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 329 |
+
dataset=dict(
|
| 330 |
+
type='CocoDataset',
|
| 331 |
+
metainfo=dict(classes=('airplane', ), palette=[
|
| 332 |
+
(
|
| 333 |
+
220,
|
| 334 |
+
20,
|
| 335 |
+
60,
|
| 336 |
+
),
|
| 337 |
+
]),
|
| 338 |
+
data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
|
| 339 |
+
ann_file='val/__coco.json',
|
| 340 |
+
data_prefix=dict(img='val/'),
|
| 341 |
+
test_mode=True,
|
| 342 |
+
pipeline=[
|
| 343 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 344 |
+
dict(type='Resize', scale=(
|
| 345 |
+
1333,
|
| 346 |
+
800,
|
| 347 |
+
), keep_ratio=True),
|
| 348 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 349 |
+
dict(
|
| 350 |
+
type='PackDetInputs',
|
| 351 |
+
meta_keys=(
|
| 352 |
+
'img_id',
|
| 353 |
+
'img_path',
|
| 354 |
+
'ori_shape',
|
| 355 |
+
'img_shape',
|
| 356 |
+
'scale_factor',
|
| 357 |
+
)),
|
| 358 |
+
],
|
| 359 |
+
backend_args=None))
|
| 360 |
+
test_dataloader = dict(
|
| 361 |
+
batch_size=1,
|
| 362 |
+
num_workers=2,
|
| 363 |
+
persistent_workers=True,
|
| 364 |
+
drop_last=False,
|
| 365 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 366 |
+
dataset=dict(
|
| 367 |
+
type='CocoDataset',
|
| 368 |
+
metainfo=dict(classes=('airplane', ), palette=[
|
| 369 |
+
(
|
| 370 |
+
220,
|
| 371 |
+
20,
|
| 372 |
+
60,
|
| 373 |
+
),
|
| 374 |
+
]),
|
| 375 |
+
data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
|
| 376 |
+
ann_file='test/__coco.json',
|
| 377 |
+
data_prefix=dict(img='test/'),
|
| 378 |
+
test_mode=True,
|
| 379 |
+
pipeline=[
|
| 380 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 381 |
+
dict(type='Resize', scale=(
|
| 382 |
+
1333,
|
| 383 |
+
800,
|
| 384 |
+
), keep_ratio=True),
|
| 385 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 386 |
+
dict(
|
| 387 |
+
type='PackDetInputs',
|
| 388 |
+
meta_keys=(
|
| 389 |
+
'img_id',
|
| 390 |
+
'img_path',
|
| 391 |
+
'ori_shape',
|
| 392 |
+
'img_shape',
|
| 393 |
+
'scale_factor',
|
| 394 |
+
)),
|
| 395 |
+
],
|
| 396 |
+
backend_args=None))
|
| 397 |
+
val_evaluator = dict(
|
| 398 |
+
type='CocoMetric',
|
| 399 |
+
ann_file='/home/safouane/Downloads/benchmark_aircraft/data/val/__coco.json',
|
| 400 |
+
metric='bbox',
|
| 401 |
+
format_only=False,
|
| 402 |
+
backend_args=None)
|
| 403 |
+
test_evaluator = dict(
|
| 404 |
+
type='CocoMetric',
|
| 405 |
+
ann_file=
|
| 406 |
+
'/home/safouane/Downloads/benchmark_aircraft/data/test/__coco.json',
|
| 407 |
+
metric='bbox',
|
| 408 |
+
format_only=False,
|
| 409 |
+
backend_args=None)
|
| 410 |
+
default_scope = 'mmdet'
|
| 411 |
+
default_hooks = dict(
|
| 412 |
+
timer=dict(type='IterTimerHook'),
|
| 413 |
+
logger=dict(type='LoggerHook', interval=5),
|
| 414 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
| 415 |
+
checkpoint=dict(type='CheckpointHook', interval=5, save_best='auto'),
|
| 416 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
| 417 |
+
visualization=dict(type='DetVisualizationHook'))
|
| 418 |
+
env_cfg = dict(
|
| 419 |
+
cudnn_benchmark=False,
|
| 420 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
| 421 |
+
dist_cfg=dict(backend='nccl'))
|
| 422 |
+
vis_backends = [
|
| 423 |
+
dict(type='LocalVisBackend'),
|
| 424 |
+
]
|
| 425 |
+
visualizer = dict(
|
| 426 |
+
type='DetLocalVisualizer',
|
| 427 |
+
vis_backends=[
|
| 428 |
+
dict(type='LocalVisBackend'),
|
| 429 |
+
dict(type='TensorboardVisBackend'),
|
| 430 |
+
],
|
| 431 |
+
name='visualizer')
|
| 432 |
+
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
|
| 433 |
+
log_level = 'INFO'
|
| 434 |
+
load_from = '/home/safouane/Downloads/benchmark_aircraft/mmdetection/configs/detr/checkpoints/detr_r50_8xb2-150e_coco_20221023_153551-436d03e8.pth'
|
| 435 |
+
resume = False
|
| 436 |
+
model = dict(
|
| 437 |
+
type='DETR',
|
| 438 |
+
num_queries=100,
|
| 439 |
+
data_preprocessor=dict(
|
| 440 |
+
type='DetDataPreprocessor',
|
| 441 |
+
mean=[
|
| 442 |
+
123.675,
|
| 443 |
+
116.28,
|
| 444 |
+
103.53,
|
| 445 |
+
],
|
| 446 |
+
std=[
|
| 447 |
+
58.395,
|
| 448 |
+
57.12,
|
| 449 |
+
57.375,
|
| 450 |
+
],
|
| 451 |
+
bgr_to_rgb=True,
|
| 452 |
+
pad_size_divisor=1),
|
| 453 |
+
backbone=dict(
|
| 454 |
+
type='ResNet',
|
| 455 |
+
depth=50,
|
| 456 |
+
num_stages=4,
|
| 457 |
+
out_indices=(3, ),
|
| 458 |
+
frozen_stages=1,
|
| 459 |
+
norm_cfg=dict(type='BN', requires_grad=False),
|
| 460 |
+
norm_eval=True,
|
| 461 |
+
style='pytorch',
|
| 462 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
| 463 |
+
neck=dict(
|
| 464 |
+
type='ChannelMapper',
|
| 465 |
+
in_channels=[
|
| 466 |
+
2048,
|
| 467 |
+
],
|
| 468 |
+
kernel_size=1,
|
| 469 |
+
out_channels=256,
|
| 470 |
+
act_cfg=None,
|
| 471 |
+
norm_cfg=None,
|
| 472 |
+
num_outs=1),
|
| 473 |
+
encoder=dict(
|
| 474 |
+
num_layers=6,
|
| 475 |
+
layer_cfg=dict(
|
| 476 |
+
self_attn_cfg=dict(
|
| 477 |
+
embed_dims=256, num_heads=8, dropout=0.1, batch_first=True),
|
| 478 |
+
ffn_cfg=dict(
|
| 479 |
+
embed_dims=256,
|
| 480 |
+
feedforward_channels=2048,
|
| 481 |
+
num_fcs=2,
|
| 482 |
+
ffn_drop=0.1,
|
| 483 |
+
act_cfg=dict(type='ReLU', inplace=True)))),
|
| 484 |
+
decoder=dict(
|
| 485 |
+
num_layers=6,
|
| 486 |
+
layer_cfg=dict(
|
| 487 |
+
self_attn_cfg=dict(
|
| 488 |
+
embed_dims=256, num_heads=8, dropout=0.1, batch_first=True),
|
| 489 |
+
cross_attn_cfg=dict(
|
| 490 |
+
embed_dims=256, num_heads=8, dropout=0.1, batch_first=True),
|
| 491 |
+
ffn_cfg=dict(
|
| 492 |
+
embed_dims=256,
|
| 493 |
+
feedforward_channels=2048,
|
| 494 |
+
num_fcs=2,
|
| 495 |
+
ffn_drop=0.1,
|
| 496 |
+
act_cfg=dict(type='ReLU', inplace=True))),
|
| 497 |
+
return_intermediate=True),
|
| 498 |
+
positional_encoding=dict(num_feats=128, normalize=True),
|
| 499 |
+
bbox_head=dict(
|
| 500 |
+
type='DETRHead',
|
| 501 |
+
num_classes=1,
|
| 502 |
+
embed_dims=256,
|
| 503 |
+
loss_cls=dict(
|
| 504 |
+
type='CrossEntropyLoss',
|
| 505 |
+
bg_cls_weight=0.1,
|
| 506 |
+
use_sigmoid=False,
|
| 507 |
+
loss_weight=1.0,
|
| 508 |
+
class_weight=1.0),
|
| 509 |
+
loss_bbox=dict(type='L1Loss', loss_weight=5.0),
|
| 510 |
+
loss_iou=dict(type='GIoULoss', loss_weight=2.0)),
|
| 511 |
+
train_cfg=dict(
|
| 512 |
+
assigner=dict(
|
| 513 |
+
type='HungarianAssigner',
|
| 514 |
+
match_costs=[
|
| 515 |
+
dict(type='ClassificationCost', weight=1.0),
|
| 516 |
+
dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'),
|
| 517 |
+
dict(type='IoUCost', iou_mode='giou', weight=2.0),
|
| 518 |
+
])),
|
| 519 |
+
test_cfg=dict(max_per_img=100))
|
| 520 |
+
optim_wrapper = dict(
|
| 521 |
+
type='OptimWrapper',
|
| 522 |
+
optimizer=dict(type='AdamW', lr=0.0001, weight_decay=0.0001),
|
| 523 |
+
clip_grad=dict(max_norm=0.1, norm_type=2),
|
| 524 |
+
paramwise_cfg=dict(
|
| 525 |
+
custom_keys=dict(backbone=dict(lr_mult=0.1, decay_mult=1.0))))
|
| 526 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=500, val_interval=1)
|
| 527 |
+
val_cfg = dict(type='ValLoop')
|
| 528 |
+
test_cfg = dict(type='TestLoop')
|
| 529 |
+
param_scheduler = [
|
| 530 |
+
dict(
|
| 531 |
+
type='MultiStepLR',
|
| 532 |
+
begin=0,
|
| 533 |
+
end=150,
|
| 534 |
+
by_epoch=True,
|
| 535 |
+
milestones=[
|
| 536 |
+
100,
|
| 537 |
+
],
|
| 538 |
+
gamma=0.1),
|
| 539 |
+
]
|
| 540 |
+
auto_scale_lr = dict(base_batch_size=16)
|
| 541 |
+
launcher = 'none'
|
| 542 |
+
work_dir = './work_dirs/detr_r50_8xb2-150e_coco'
|
inference/fasterrcnn_config.py
ADDED
|
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
dataset_type = 'CocoDataset'
|
| 2 |
+
data_root = '/home/safouane/Downloads/benchmark_aircraft/data/'
|
| 3 |
+
backend_args = None
|
| 4 |
+
max_epochs = 500
|
| 5 |
+
metainfo = dict(
|
| 6 |
+
classes=('airplane', ), palette=[
|
| 7 |
+
(
|
| 8 |
+
0,
|
| 9 |
+
128,
|
| 10 |
+
255,
|
| 11 |
+
),
|
| 12 |
+
])
|
| 13 |
+
num_classes = 1
|
| 14 |
+
model = dict(
|
| 15 |
+
type='FasterRCNN',
|
| 16 |
+
data_preprocessor=dict(
|
| 17 |
+
type='DetDataPreprocessor',
|
| 18 |
+
mean=[
|
| 19 |
+
103.53,
|
| 20 |
+
116.28,
|
| 21 |
+
123.675,
|
| 22 |
+
],
|
| 23 |
+
std=[
|
| 24 |
+
1.0,
|
| 25 |
+
1.0,
|
| 26 |
+
1.0,
|
| 27 |
+
],
|
| 28 |
+
bgr_to_rgb=False,
|
| 29 |
+
pad_size_divisor=32),
|
| 30 |
+
backbone=dict(
|
| 31 |
+
type='ResNet',
|
| 32 |
+
depth=50,
|
| 33 |
+
num_stages=4,
|
| 34 |
+
out_indices=(
|
| 35 |
+
0,
|
| 36 |
+
1,
|
| 37 |
+
2,
|
| 38 |
+
3,
|
| 39 |
+
),
|
| 40 |
+
frozen_stages=1,
|
| 41 |
+
norm_cfg=dict(type='BN', requires_grad=False),
|
| 42 |
+
norm_eval=True,
|
| 43 |
+
style='caffe',
|
| 44 |
+
init_cfg=dict(
|
| 45 |
+
type='Pretrained',
|
| 46 |
+
checkpoint='open-mmlab://detectron2/resnet50_caffe')),
|
| 47 |
+
neck=dict(
|
| 48 |
+
type='FPN',
|
| 49 |
+
in_channels=[
|
| 50 |
+
256,
|
| 51 |
+
512,
|
| 52 |
+
1024,
|
| 53 |
+
2048,
|
| 54 |
+
],
|
| 55 |
+
out_channels=256,
|
| 56 |
+
num_outs=5),
|
| 57 |
+
rpn_head=dict(
|
| 58 |
+
type='RPNHead',
|
| 59 |
+
in_channels=256,
|
| 60 |
+
feat_channels=256,
|
| 61 |
+
anchor_generator=dict(
|
| 62 |
+
type='AnchorGenerator',
|
| 63 |
+
scales=[
|
| 64 |
+
8,
|
| 65 |
+
],
|
| 66 |
+
ratios=[
|
| 67 |
+
0.5,
|
| 68 |
+
1.0,
|
| 69 |
+
2.0,
|
| 70 |
+
],
|
| 71 |
+
strides=[
|
| 72 |
+
4,
|
| 73 |
+
8,
|
| 74 |
+
16,
|
| 75 |
+
32,
|
| 76 |
+
64,
|
| 77 |
+
]),
|
| 78 |
+
bbox_coder=dict(
|
| 79 |
+
type='DeltaXYWHBBoxCoder',
|
| 80 |
+
target_means=[
|
| 81 |
+
0.0,
|
| 82 |
+
0.0,
|
| 83 |
+
0.0,
|
| 84 |
+
0.0,
|
| 85 |
+
],
|
| 86 |
+
target_stds=[
|
| 87 |
+
1.0,
|
| 88 |
+
1.0,
|
| 89 |
+
1.0,
|
| 90 |
+
1.0,
|
| 91 |
+
]),
|
| 92 |
+
loss_cls=dict(
|
| 93 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
| 94 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
| 95 |
+
roi_head=dict(
|
| 96 |
+
type='StandardRoIHead',
|
| 97 |
+
bbox_roi_extractor=dict(
|
| 98 |
+
type='SingleRoIExtractor',
|
| 99 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
| 100 |
+
out_channels=256,
|
| 101 |
+
featmap_strides=[
|
| 102 |
+
4,
|
| 103 |
+
8,
|
| 104 |
+
16,
|
| 105 |
+
32,
|
| 106 |
+
]),
|
| 107 |
+
bbox_head=dict(
|
| 108 |
+
type='Shared2FCBBoxHead',
|
| 109 |
+
in_channels=256,
|
| 110 |
+
fc_out_channels=1024,
|
| 111 |
+
roi_feat_size=7,
|
| 112 |
+
num_classes=1,
|
| 113 |
+
bbox_coder=dict(
|
| 114 |
+
type='DeltaXYWHBBoxCoder',
|
| 115 |
+
target_means=[
|
| 116 |
+
0.0,
|
| 117 |
+
0.0,
|
| 118 |
+
0.0,
|
| 119 |
+
0.0,
|
| 120 |
+
],
|
| 121 |
+
target_stds=[
|
| 122 |
+
0.1,
|
| 123 |
+
0.1,
|
| 124 |
+
0.2,
|
| 125 |
+
0.2,
|
| 126 |
+
]),
|
| 127 |
+
reg_class_agnostic=False,
|
| 128 |
+
loss_cls=dict(
|
| 129 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
| 130 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
|
| 131 |
+
train_cfg=dict(
|
| 132 |
+
rpn=dict(
|
| 133 |
+
assigner=dict(
|
| 134 |
+
type='MaxIoUAssigner',
|
| 135 |
+
pos_iou_thr=0.7,
|
| 136 |
+
neg_iou_thr=0.3,
|
| 137 |
+
min_pos_iou=0.3,
|
| 138 |
+
match_low_quality=True,
|
| 139 |
+
ignore_iof_thr=-1),
|
| 140 |
+
sampler=dict(
|
| 141 |
+
type='RandomSampler',
|
| 142 |
+
num=256,
|
| 143 |
+
pos_fraction=0.5,
|
| 144 |
+
neg_pos_ub=-1,
|
| 145 |
+
add_gt_as_proposals=False),
|
| 146 |
+
allowed_border=-1,
|
| 147 |
+
pos_weight=-1,
|
| 148 |
+
debug=False),
|
| 149 |
+
rpn_proposal=dict(
|
| 150 |
+
nms_pre=2000,
|
| 151 |
+
max_per_img=1000,
|
| 152 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
| 153 |
+
min_bbox_size=0),
|
| 154 |
+
rcnn=dict(
|
| 155 |
+
assigner=dict(
|
| 156 |
+
type='MaxIoUAssigner',
|
| 157 |
+
pos_iou_thr=0.5,
|
| 158 |
+
neg_iou_thr=0.5,
|
| 159 |
+
min_pos_iou=0.5,
|
| 160 |
+
match_low_quality=False,
|
| 161 |
+
ignore_iof_thr=-1),
|
| 162 |
+
sampler=dict(
|
| 163 |
+
type='RandomSampler',
|
| 164 |
+
num=512,
|
| 165 |
+
pos_fraction=0.25,
|
| 166 |
+
neg_pos_ub=-1,
|
| 167 |
+
add_gt_as_proposals=True),
|
| 168 |
+
pos_weight=-1,
|
| 169 |
+
debug=False)),
|
| 170 |
+
test_cfg=dict(
|
| 171 |
+
rpn=dict(
|
| 172 |
+
nms_pre=1000,
|
| 173 |
+
max_per_img=1000,
|
| 174 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
| 175 |
+
min_bbox_size=0),
|
| 176 |
+
rcnn=dict(
|
| 177 |
+
score_thr=0.05,
|
| 178 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
| 179 |
+
max_per_img=100)))
|
| 180 |
+
train_pipeline = [
|
| 181 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 182 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 183 |
+
dict(type='Resize', scale=(
|
| 184 |
+
1333,
|
| 185 |
+
800,
|
| 186 |
+
), keep_ratio=True),
|
| 187 |
+
dict(type='RandomFlip', prob=0.5),
|
| 188 |
+
dict(type='PackDetInputs'),
|
| 189 |
+
]
|
| 190 |
+
test_pipeline = [
|
| 191 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 192 |
+
dict(type='Resize', scale=(
|
| 193 |
+
1333,
|
| 194 |
+
800,
|
| 195 |
+
), keep_ratio=True),
|
| 196 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 197 |
+
dict(
|
| 198 |
+
type='PackDetInputs',
|
| 199 |
+
meta_keys=(
|
| 200 |
+
'img_id',
|
| 201 |
+
'img_path',
|
| 202 |
+
'ori_shape',
|
| 203 |
+
'img_shape',
|
| 204 |
+
'scale_factor',
|
| 205 |
+
)),
|
| 206 |
+
]
|
| 207 |
+
train_dataloader = dict(
|
| 208 |
+
batch_size=32,
|
| 209 |
+
num_workers=2,
|
| 210 |
+
persistent_workers=True,
|
| 211 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
| 212 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
| 213 |
+
dataset=dict(
|
| 214 |
+
type='CocoDataset',
|
| 215 |
+
metainfo=dict(classes=('airplane', ), palette=[
|
| 216 |
+
(
|
| 217 |
+
220,
|
| 218 |
+
20,
|
| 219 |
+
60,
|
| 220 |
+
),
|
| 221 |
+
]),
|
| 222 |
+
data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
|
| 223 |
+
ann_file='train/__coco.json',
|
| 224 |
+
data_prefix=dict(img='train/'),
|
| 225 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
| 226 |
+
pipeline=[
|
| 227 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 228 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 229 |
+
dict(type='Resize', scale=(
|
| 230 |
+
1333,
|
| 231 |
+
800,
|
| 232 |
+
), keep_ratio=True),
|
| 233 |
+
dict(type='RandomFlip', prob=0.5),
|
| 234 |
+
dict(type='PackDetInputs'),
|
| 235 |
+
],
|
| 236 |
+
backend_args=None))
|
| 237 |
+
val_dataloader = dict(
|
| 238 |
+
batch_size=32,
|
| 239 |
+
num_workers=2,
|
| 240 |
+
persistent_workers=True,
|
| 241 |
+
drop_last=False,
|
| 242 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 243 |
+
dataset=dict(
|
| 244 |
+
type='CocoDataset',
|
| 245 |
+
metainfo=dict(classes=('airplane', ), palette=[
|
| 246 |
+
(
|
| 247 |
+
220,
|
| 248 |
+
20,
|
| 249 |
+
60,
|
| 250 |
+
),
|
| 251 |
+
]),
|
| 252 |
+
data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
|
| 253 |
+
ann_file='val/__coco.json',
|
| 254 |
+
data_prefix=dict(img='val/'),
|
| 255 |
+
test_mode=True,
|
| 256 |
+
pipeline=[
|
| 257 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 258 |
+
dict(type='Resize', scale=(
|
| 259 |
+
1333,
|
| 260 |
+
800,
|
| 261 |
+
), keep_ratio=True),
|
| 262 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 263 |
+
dict(
|
| 264 |
+
type='PackDetInputs',
|
| 265 |
+
meta_keys=(
|
| 266 |
+
'img_id',
|
| 267 |
+
'img_path',
|
| 268 |
+
'ori_shape',
|
| 269 |
+
'img_shape',
|
| 270 |
+
'scale_factor',
|
| 271 |
+
)),
|
| 272 |
+
],
|
| 273 |
+
backend_args=None))
|
| 274 |
+
test_dataloader = dict(
|
| 275 |
+
batch_size=32,
|
| 276 |
+
num_workers=2,
|
| 277 |
+
persistent_workers=True,
|
| 278 |
+
drop_last=False,
|
| 279 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 280 |
+
dataset=dict(
|
| 281 |
+
type='CocoDataset',
|
| 282 |
+
metainfo=dict(classes=('airplane', ), palette=[
|
| 283 |
+
(
|
| 284 |
+
220,
|
| 285 |
+
20,
|
| 286 |
+
60,
|
| 287 |
+
),
|
| 288 |
+
]),
|
| 289 |
+
data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
|
| 290 |
+
ann_file='test/__coco.json',
|
| 291 |
+
data_prefix=dict(img='test/'),
|
| 292 |
+
test_mode=True,
|
| 293 |
+
pipeline=[
|
| 294 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 295 |
+
dict(type='Resize', scale=(
|
| 296 |
+
1333,
|
| 297 |
+
800,
|
| 298 |
+
), keep_ratio=True),
|
| 299 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 300 |
+
dict(
|
| 301 |
+
type='PackDetInputs',
|
| 302 |
+
meta_keys=(
|
| 303 |
+
'img_id',
|
| 304 |
+
'img_path',
|
| 305 |
+
'ori_shape',
|
| 306 |
+
'img_shape',
|
| 307 |
+
'scale_factor',
|
| 308 |
+
)),
|
| 309 |
+
],
|
| 310 |
+
backend_args=None))
|
| 311 |
+
val_evaluator = dict(
|
| 312 |
+
type='CocoMetric',
|
| 313 |
+
ann_file='/home/safouane/Downloads/benchmark_aircraft/data/val/__coco.json',
|
| 314 |
+
metric='bbox',
|
| 315 |
+
format_only=False,
|
| 316 |
+
backend_args=None)
|
| 317 |
+
test_evaluator = dict(
|
| 318 |
+
type='CocoMetric',
|
| 319 |
+
ann_file=
|
| 320 |
+
'/home/safouane/Downloads/benchmark_aircraft/data/test/__coco.json',
|
| 321 |
+
metric='bbox',
|
| 322 |
+
format_only=False,
|
| 323 |
+
backend_args=None)
|
| 324 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=500, val_interval=1)
|
| 325 |
+
val_cfg = dict(type='ValLoop')
|
| 326 |
+
test_cfg = dict(type='TestLoop')
|
| 327 |
+
param_scheduler = [
|
| 328 |
+
dict(
|
| 329 |
+
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
|
| 330 |
+
dict(
|
| 331 |
+
type='MultiStepLR',
|
| 332 |
+
begin=0,
|
| 333 |
+
end=12,
|
| 334 |
+
by_epoch=True,
|
| 335 |
+
milestones=[
|
| 336 |
+
8,
|
| 337 |
+
11,
|
| 338 |
+
],
|
| 339 |
+
gamma=0.1),
|
| 340 |
+
]
|
| 341 |
+
optim_wrapper = dict(
|
| 342 |
+
type='OptimWrapper',
|
| 343 |
+
optimizer=dict(type='SGD', lr=0.015, momentum=0.9, weight_decay=0.0001))
|
| 344 |
+
auto_scale_lr = dict(enable=False, base_batch_size=32)
|
| 345 |
+
default_scope = 'mmdet'
|
| 346 |
+
default_hooks = dict(
|
| 347 |
+
timer=dict(type='IterTimerHook'),
|
| 348 |
+
logger=dict(type='LoggerHook', interval=50),
|
| 349 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
| 350 |
+
checkpoint=dict(type='CheckpointHook', interval=50, save_best='auto'),
|
| 351 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
| 352 |
+
visualization=dict(type='DetVisualizationHook'))
|
| 353 |
+
env_cfg = dict(
|
| 354 |
+
cudnn_benchmark=False,
|
| 355 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
| 356 |
+
dist_cfg=dict(backend='nccl'))
|
| 357 |
+
vis_backends = [
|
| 358 |
+
dict(type='LocalVisBackend'),
|
| 359 |
+
]
|
| 360 |
+
visualizer = dict(
|
| 361 |
+
type='DetLocalVisualizer',
|
| 362 |
+
vis_backends=[
|
| 363 |
+
dict(type='LocalVisBackend'),
|
| 364 |
+
dict(type='TensorboardVisBackend'),
|
| 365 |
+
],
|
| 366 |
+
name='visualizer')
|
| 367 |
+
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
|
| 368 |
+
log_level = 'INFO'
|
| 369 |
+
load_from = '/home/safouane/Downloads/benchmark_aircraft/mmlab_configs/faster_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.378_20200504_180032-c5925ee5.pth'
|
| 370 |
+
resume = False
|
| 371 |
+
launcher = 'none'
|
| 372 |
+
work_dir = './work_dirs/faster-rcnn_r50-caffe_fpn_1x_coco'
|
inference/models/centernetbest.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0af1c3c2357dc6f4650e798e5aff8be01e93a2766a57548026622a10b40462a8
|
| 3 |
+
size 140757155
|
inference/models/detrbest.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1dbffb3471ae7d9b4ad7a33977cebb38983e797dd7cb2180f314a42b9d99e80a
|
| 3 |
+
size 213052547
|
inference/models/fasterrcnnbest.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a8f25fcd2fe4bbfb27c3f62c667e9a4d337079ddb576bee01424a6bd8c225568
|
| 3 |
+
size 169034569
|
inference/models/retinanetbest.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5addc6c1a9fa202b5192922559bd69c9c274774bb427cecded5bcbfcd6a59d72
|
| 3 |
+
size 222922197
|
inference/models/rtmdetbest.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:047f9d0980a6517a2e8a436f7f6377b4bf04f0370a9a6906f317f691234b2464
|
| 3 |
+
size 82940119
|
inference/models/ssdbest.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b7463e3afedf144cb289a244b7548b33e0fd2b7255aa7580606ce4a1dc2733e1
|
| 3 |
+
size 28107401
|
inference/models/yolov5best.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:51fce45b8130940c74f07fcda686a120648d75b6d4d9f2f9287b4769f9029608
|
| 3 |
+
size 172984812
|
inference/models/yolov8best.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ffaab64d2ad6ecaeca6d79066c95b8602060469bf28edf21caeb5df6d32daf2b
|
| 3 |
+
size 136739881
|
inference/retinanet_config.py
ADDED
|
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
dataset_type = 'CocoDataset'
|
| 2 |
+
data_root = '/home/safouane/Downloads/benchmark_aircraft/data/'
|
| 3 |
+
backend_args = None
|
| 4 |
+
max_epochs = 500
|
| 5 |
+
metainfo = {
|
| 6 |
+
'classes': ('airplane', ),
|
| 7 |
+
'palette': [
|
| 8 |
+
(0, 128, 255),
|
| 9 |
+
]
|
| 10 |
+
}
|
| 11 |
+
num_classes = 1
|
| 12 |
+
model = dict(
|
| 13 |
+
type='RetinaNet',
|
| 14 |
+
data_preprocessor=dict(
|
| 15 |
+
type='DetDataPreprocessor',
|
| 16 |
+
mean=[
|
| 17 |
+
123.675,
|
| 18 |
+
116.28,
|
| 19 |
+
103.53,
|
| 20 |
+
],
|
| 21 |
+
std=[
|
| 22 |
+
58.395,
|
| 23 |
+
57.12,
|
| 24 |
+
57.375,
|
| 25 |
+
],
|
| 26 |
+
bgr_to_rgb=True,
|
| 27 |
+
pad_size_divisor=64,
|
| 28 |
+
batch_augments=[
|
| 29 |
+
dict(type='BatchFixedSizePad', size=(
|
| 30 |
+
640,
|
| 31 |
+
640,
|
| 32 |
+
)),
|
| 33 |
+
]),
|
| 34 |
+
backbone=dict(
|
| 35 |
+
type='ResNet',
|
| 36 |
+
depth=50,
|
| 37 |
+
num_stages=4,
|
| 38 |
+
out_indices=(
|
| 39 |
+
0,
|
| 40 |
+
1,
|
| 41 |
+
2,
|
| 42 |
+
3,
|
| 43 |
+
),
|
| 44 |
+
frozen_stages=1,
|
| 45 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
| 46 |
+
norm_eval=False,
|
| 47 |
+
style='pytorch',
|
| 48 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
| 49 |
+
neck=dict(
|
| 50 |
+
type='FPN',
|
| 51 |
+
in_channels=[
|
| 52 |
+
256,
|
| 53 |
+
512,
|
| 54 |
+
1024,
|
| 55 |
+
2048,
|
| 56 |
+
],
|
| 57 |
+
out_channels=256,
|
| 58 |
+
start_level=1,
|
| 59 |
+
add_extra_convs='on_input',
|
| 60 |
+
num_outs=5,
|
| 61 |
+
relu_before_extra_convs=True,
|
| 62 |
+
no_norm_on_lateral=True,
|
| 63 |
+
norm_cfg=dict(type='BN', requires_grad=True)),
|
| 64 |
+
bbox_head=dict(
|
| 65 |
+
type='RetinaSepBNHead',
|
| 66 |
+
num_classes=1,
|
| 67 |
+
in_channels=256,
|
| 68 |
+
stacked_convs=4,
|
| 69 |
+
feat_channels=256,
|
| 70 |
+
anchor_generator=dict(
|
| 71 |
+
type='AnchorGenerator',
|
| 72 |
+
octave_base_scale=4,
|
| 73 |
+
scales_per_octave=3,
|
| 74 |
+
ratios=[
|
| 75 |
+
0.5,
|
| 76 |
+
1.0,
|
| 77 |
+
2.0,
|
| 78 |
+
],
|
| 79 |
+
strides=[
|
| 80 |
+
8,
|
| 81 |
+
16,
|
| 82 |
+
32,
|
| 83 |
+
64,
|
| 84 |
+
128,
|
| 85 |
+
]),
|
| 86 |
+
bbox_coder=dict(
|
| 87 |
+
type='DeltaXYWHBBoxCoder',
|
| 88 |
+
target_means=[
|
| 89 |
+
0.0,
|
| 90 |
+
0.0,
|
| 91 |
+
0.0,
|
| 92 |
+
0.0,
|
| 93 |
+
],
|
| 94 |
+
target_stds=[
|
| 95 |
+
1.0,
|
| 96 |
+
1.0,
|
| 97 |
+
1.0,
|
| 98 |
+
1.0,
|
| 99 |
+
]),
|
| 100 |
+
loss_cls=dict(
|
| 101 |
+
type='FocalLoss',
|
| 102 |
+
use_sigmoid=True,
|
| 103 |
+
gamma=2.0,
|
| 104 |
+
alpha=0.25,
|
| 105 |
+
loss_weight=1.0),
|
| 106 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0),
|
| 107 |
+
num_ins=5,
|
| 108 |
+
norm_cfg=dict(type='BN', requires_grad=True)),
|
| 109 |
+
train_cfg=dict(
|
| 110 |
+
assigner=dict(
|
| 111 |
+
type='MaxIoUAssigner',
|
| 112 |
+
pos_iou_thr=0.5,
|
| 113 |
+
neg_iou_thr=0.5,
|
| 114 |
+
min_pos_iou=0,
|
| 115 |
+
ignore_iof_thr=-1),
|
| 116 |
+
sampler=dict(type='PseudoSampler'),
|
| 117 |
+
allowed_border=-1,
|
| 118 |
+
pos_weight=-1,
|
| 119 |
+
debug=False),
|
| 120 |
+
test_cfg=dict(
|
| 121 |
+
nms_pre=1000,
|
| 122 |
+
min_bbox_size=0,
|
| 123 |
+
score_thr=0.05,
|
| 124 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
| 125 |
+
max_per_img=100))
|
| 126 |
+
train_pipeline = [
|
| 127 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 128 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 129 |
+
dict(
|
| 130 |
+
type='RandomResize',
|
| 131 |
+
scale=(
|
| 132 |
+
640,
|
| 133 |
+
640,
|
| 134 |
+
),
|
| 135 |
+
ratio_range=(
|
| 136 |
+
0.8,
|
| 137 |
+
1.2,
|
| 138 |
+
),
|
| 139 |
+
keep_ratio=True),
|
| 140 |
+
dict(type='RandomCrop', crop_size=(
|
| 141 |
+
640,
|
| 142 |
+
640,
|
| 143 |
+
)),
|
| 144 |
+
dict(type='RandomFlip', prob=0.5),
|
| 145 |
+
dict(type='PackDetInputs'),
|
| 146 |
+
]
|
| 147 |
+
test_pipeline = [
|
| 148 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 149 |
+
dict(type='Resize', scale=(
|
| 150 |
+
640,
|
| 151 |
+
640,
|
| 152 |
+
), keep_ratio=True),
|
| 153 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 154 |
+
dict(
|
| 155 |
+
type='PackDetInputs',
|
| 156 |
+
meta_keys=(
|
| 157 |
+
'img_id',
|
| 158 |
+
'img_path',
|
| 159 |
+
'ori_shape',
|
| 160 |
+
'img_shape',
|
| 161 |
+
'scale_factor',
|
| 162 |
+
)),
|
| 163 |
+
]
|
| 164 |
+
train_dataloader = dict(
|
| 165 |
+
batch_size=32,
|
| 166 |
+
num_workers=2,
|
| 167 |
+
persistent_workers=True,
|
| 168 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
| 169 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
| 170 |
+
dataset=dict(
|
| 171 |
+
type='CocoDataset',
|
| 172 |
+
metainfo=dict(classes=('airplane', ), palette=[
|
| 173 |
+
(
|
| 174 |
+
220,
|
| 175 |
+
20,
|
| 176 |
+
60,
|
| 177 |
+
),
|
| 178 |
+
]),
|
| 179 |
+
data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
|
| 180 |
+
ann_file='train/__coco.json',
|
| 181 |
+
data_prefix=dict(img='train/'),
|
| 182 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
| 183 |
+
pipeline=[
|
| 184 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 185 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 186 |
+
dict(
|
| 187 |
+
type='RandomResize',
|
| 188 |
+
scale=(
|
| 189 |
+
640,
|
| 190 |
+
640,
|
| 191 |
+
),
|
| 192 |
+
ratio_range=(
|
| 193 |
+
0.8,
|
| 194 |
+
1.2,
|
| 195 |
+
),
|
| 196 |
+
keep_ratio=True),
|
| 197 |
+
dict(type='RandomCrop', crop_size=(
|
| 198 |
+
640,
|
| 199 |
+
640,
|
| 200 |
+
)),
|
| 201 |
+
dict(type='RandomFlip', prob=0.5),
|
| 202 |
+
dict(type='PackDetInputs'),
|
| 203 |
+
],
|
| 204 |
+
backend_args=None))
|
| 205 |
+
val_dataloader = dict(
|
| 206 |
+
batch_size=32,
|
| 207 |
+
num_workers=2,
|
| 208 |
+
persistent_workers=True,
|
| 209 |
+
drop_last=False,
|
| 210 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 211 |
+
dataset=dict(
|
| 212 |
+
type='CocoDataset',
|
| 213 |
+
metainfo=dict(classes=('airplane', ), palette=[
|
| 214 |
+
(
|
| 215 |
+
220,
|
| 216 |
+
20,
|
| 217 |
+
60,
|
| 218 |
+
),
|
| 219 |
+
]),
|
| 220 |
+
data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
|
| 221 |
+
ann_file='val/__coco.json',
|
| 222 |
+
data_prefix=dict(img='val/'),
|
| 223 |
+
test_mode=True,
|
| 224 |
+
pipeline=[
|
| 225 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 226 |
+
dict(type='Resize', scale=(
|
| 227 |
+
640,
|
| 228 |
+
640,
|
| 229 |
+
), keep_ratio=True),
|
| 230 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 231 |
+
dict(
|
| 232 |
+
type='PackDetInputs',
|
| 233 |
+
meta_keys=(
|
| 234 |
+
'img_id',
|
| 235 |
+
'img_path',
|
| 236 |
+
'ori_shape',
|
| 237 |
+
'img_shape',
|
| 238 |
+
'scale_factor',
|
| 239 |
+
)),
|
| 240 |
+
],
|
| 241 |
+
backend_args=None))
|
| 242 |
+
test_dataloader = dict(
|
| 243 |
+
batch_size=1,
|
| 244 |
+
num_workers=2,
|
| 245 |
+
persistent_workers=True,
|
| 246 |
+
drop_last=False,
|
| 247 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 248 |
+
dataset=dict(
|
| 249 |
+
type='CocoDataset',
|
| 250 |
+
metainfo=dict(classes=('airplane', ), palette=[
|
| 251 |
+
(
|
| 252 |
+
220,
|
| 253 |
+
20,
|
| 254 |
+
60,
|
| 255 |
+
),
|
| 256 |
+
]),
|
| 257 |
+
data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
|
| 258 |
+
ann_file='test/__coco.json',
|
| 259 |
+
data_prefix=dict(img='test/'),
|
| 260 |
+
test_mode=True,
|
| 261 |
+
pipeline=[
|
| 262 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 263 |
+
dict(type='Resize', scale=(
|
| 264 |
+
640,
|
| 265 |
+
640,
|
| 266 |
+
), keep_ratio=True),
|
| 267 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 268 |
+
dict(
|
| 269 |
+
type='PackDetInputs',
|
| 270 |
+
meta_keys=(
|
| 271 |
+
'img_id',
|
| 272 |
+
'img_path',
|
| 273 |
+
'ori_shape',
|
| 274 |
+
'img_shape',
|
| 275 |
+
'scale_factor',
|
| 276 |
+
)),
|
| 277 |
+
],
|
| 278 |
+
backend_args=None))
|
| 279 |
+
val_evaluator = dict(
|
| 280 |
+
type='CocoMetric',
|
| 281 |
+
ann_file='/home/safouane/Downloads/benchmark_aircraft/data/val/__coco.json',
|
| 282 |
+
metric='bbox',
|
| 283 |
+
format_only=False,
|
| 284 |
+
backend_args=None)
|
| 285 |
+
test_evaluator = dict(
|
| 286 |
+
type='CocoMetric',
|
| 287 |
+
ann_file=
|
| 288 |
+
'/home/safouane/Downloads/benchmark_aircraft/data/test/__coco.json',
|
| 289 |
+
metric='bbox',
|
| 290 |
+
format_only=False,
|
| 291 |
+
backend_args=None)
|
| 292 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=500, val_interval=10)
|
| 293 |
+
val_cfg = dict(type='ValLoop')
|
| 294 |
+
test_cfg = dict(type='TestLoop')
|
| 295 |
+
param_scheduler = [
|
| 296 |
+
dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000),
|
| 297 |
+
dict(
|
| 298 |
+
type='MultiStepLR',
|
| 299 |
+
begin=0,
|
| 300 |
+
end=50,
|
| 301 |
+
by_epoch=True,
|
| 302 |
+
milestones=[
|
| 303 |
+
30,
|
| 304 |
+
40,
|
| 305 |
+
],
|
| 306 |
+
gamma=0.1),
|
| 307 |
+
]
|
| 308 |
+
optim_wrapper = dict(
|
| 309 |
+
type='OptimWrapper',
|
| 310 |
+
optimizer=dict(type='SGD', lr=0.015, momentum=0.9, weight_decay=0.0001),
|
| 311 |
+
paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True))
|
| 312 |
+
auto_scale_lr = dict(enable=False, base_batch_size=64)
|
| 313 |
+
default_scope = 'mmdet'
|
| 314 |
+
default_hooks = dict(
|
| 315 |
+
timer=dict(type='IterTimerHook'),
|
| 316 |
+
logger=dict(type='LoggerHook', interval=50),
|
| 317 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
| 318 |
+
checkpoint=dict(
|
| 319 |
+
type='CheckpointHook', interval=20, max_keep_ckpts=2,
|
| 320 |
+
save_best='auto'),
|
| 321 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
| 322 |
+
visualization=dict(type='DetVisualizationHook'))
|
| 323 |
+
env_cfg = dict(
|
| 324 |
+
cudnn_benchmark=True,
|
| 325 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
| 326 |
+
dist_cfg=dict(backend='nccl'))
|
| 327 |
+
vis_backends = [
|
| 328 |
+
dict(type='LocalVisBackend'),
|
| 329 |
+
]
|
| 330 |
+
visualizer = dict(
|
| 331 |
+
type='DetLocalVisualizer',
|
| 332 |
+
vis_backends=[
|
| 333 |
+
dict(type='LocalVisBackend'),
|
| 334 |
+
dict(type='TensorboardVisBackend'),
|
| 335 |
+
],
|
| 336 |
+
name='visualizer')
|
| 337 |
+
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
|
| 338 |
+
log_level = 'INFO'
|
| 339 |
+
load_from = '/home/safouane/Downloads/benchmark_aircraft/mmlab_configs/retinanet_r50_fpn_crop640_50e_coco-9b953d76.pth'
|
| 340 |
+
resume = False
|
| 341 |
+
norm_cfg = dict(type='BN', requires_grad=True)
|
| 342 |
+
launcher = 'none'
|
| 343 |
+
work_dir = './work_dirs/retinanet_r50_fpn_crop640-50e_coco'
|
inference/rtmdet_config.py
ADDED
|
@@ -0,0 +1,562 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
default_scope = 'mmdet'
|
| 2 |
+
dataset_type = 'CocoDataset'
|
| 3 |
+
data_root = '/home/safouane/Downloads/benchmark_aircraft/data/'
|
| 4 |
+
backend_args = None
|
| 5 |
+
batch_size = 64
|
| 6 |
+
max_epochs = 300
|
| 7 |
+
metainfo = {
|
| 8 |
+
'classes': ('airplane', ),
|
| 9 |
+
'palette': [
|
| 10 |
+
(0, 128, 255),
|
| 11 |
+
]
|
| 12 |
+
}
|
| 13 |
+
num_classes = 1
|
| 14 |
+
default_hooks = dict(
|
| 15 |
+
timer=dict(type='IterTimerHook'),
|
| 16 |
+
logger=dict(type='LoggerHook', interval=50),
|
| 17 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
| 18 |
+
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3),
|
| 19 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
| 20 |
+
visualization=dict(type='DetVisualizationHook'))
|
| 21 |
+
env_cfg = dict(
|
| 22 |
+
cudnn_benchmark=False,
|
| 23 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
| 24 |
+
dist_cfg=dict(backend='nccl'))
|
| 25 |
+
vis_backends = [
|
| 26 |
+
dict(type='LocalVisBackend'),
|
| 27 |
+
]
|
| 28 |
+
visualizer = dict(
|
| 29 |
+
type='DetLocalVisualizer',
|
| 30 |
+
vis_backends=[
|
| 31 |
+
dict(type='LocalVisBackend'),
|
| 32 |
+
dict(type='TensorboardVisBackend'),
|
| 33 |
+
],
|
| 34 |
+
name='visualizer')
|
| 35 |
+
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
|
| 36 |
+
log_level = 'INFO'
|
| 37 |
+
load_from = '/home/safouane/Downloads/benchmark_aircraft/mmdetection/configs/rtmdet/checkpoints/rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth'
|
| 38 |
+
resume = False
|
| 39 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=500, val_interval=10)
|
| 40 |
+
val_cfg = dict(type='ValLoop')
|
| 41 |
+
test_cfg = dict(type='TestLoop')
|
| 42 |
+
param_scheduler = [
|
| 43 |
+
dict(
|
| 44 |
+
type='LinearLR', start_factor=1e-05, by_epoch=False, begin=0,
|
| 45 |
+
end=1000),
|
| 46 |
+
dict(
|
| 47 |
+
type='CosineAnnealingLR',
|
| 48 |
+
eta_min=0.0002,
|
| 49 |
+
begin=150,
|
| 50 |
+
end=300,
|
| 51 |
+
T_max=150,
|
| 52 |
+
by_epoch=True,
|
| 53 |
+
convert_to_iter_based=True),
|
| 54 |
+
]
|
| 55 |
+
optim_wrapper = dict(
|
| 56 |
+
type='OptimWrapper',
|
| 57 |
+
optimizer=dict(type='AdamW', lr=0.004, weight_decay=0.05),
|
| 58 |
+
paramwise_cfg=dict(
|
| 59 |
+
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
|
| 60 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
| 61 |
+
train_pipeline = [
|
| 62 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 63 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 64 |
+
dict(
|
| 65 |
+
type='CachedMosaic',
|
| 66 |
+
img_scale=(
|
| 67 |
+
640,
|
| 68 |
+
640,
|
| 69 |
+
),
|
| 70 |
+
pad_val=114.0,
|
| 71 |
+
max_cached_images=20,
|
| 72 |
+
random_pop=False),
|
| 73 |
+
dict(
|
| 74 |
+
type='RandomResize',
|
| 75 |
+
scale=(
|
| 76 |
+
1280,
|
| 77 |
+
1280,
|
| 78 |
+
),
|
| 79 |
+
ratio_range=(
|
| 80 |
+
0.5,
|
| 81 |
+
2.0,
|
| 82 |
+
),
|
| 83 |
+
keep_ratio=True),
|
| 84 |
+
dict(type='RandomCrop', crop_size=(
|
| 85 |
+
640,
|
| 86 |
+
640,
|
| 87 |
+
)),
|
| 88 |
+
dict(type='YOLOXHSVRandomAug'),
|
| 89 |
+
dict(type='RandomFlip', prob=0.5),
|
| 90 |
+
dict(type='Pad', size=(
|
| 91 |
+
640,
|
| 92 |
+
640,
|
| 93 |
+
), pad_val=dict(img=(
|
| 94 |
+
114,
|
| 95 |
+
114,
|
| 96 |
+
114,
|
| 97 |
+
))),
|
| 98 |
+
dict(
|
| 99 |
+
type='CachedMixUp',
|
| 100 |
+
img_scale=(
|
| 101 |
+
640,
|
| 102 |
+
640,
|
| 103 |
+
),
|
| 104 |
+
ratio_range=(
|
| 105 |
+
1.0,
|
| 106 |
+
1.0,
|
| 107 |
+
),
|
| 108 |
+
max_cached_images=10,
|
| 109 |
+
random_pop=False,
|
| 110 |
+
pad_val=(
|
| 111 |
+
114,
|
| 112 |
+
114,
|
| 113 |
+
114,
|
| 114 |
+
),
|
| 115 |
+
prob=0.5),
|
| 116 |
+
dict(type='PackDetInputs'),
|
| 117 |
+
]
|
| 118 |
+
test_pipeline = [
|
| 119 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 120 |
+
dict(type='Resize', scale=(
|
| 121 |
+
640,
|
| 122 |
+
640,
|
| 123 |
+
), keep_ratio=True),
|
| 124 |
+
dict(type='Pad', size=(
|
| 125 |
+
640,
|
| 126 |
+
640,
|
| 127 |
+
), pad_val=dict(img=(
|
| 128 |
+
114,
|
| 129 |
+
114,
|
| 130 |
+
114,
|
| 131 |
+
))),
|
| 132 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 133 |
+
dict(
|
| 134 |
+
type='PackDetInputs',
|
| 135 |
+
meta_keys=(
|
| 136 |
+
'img_id',
|
| 137 |
+
'img_path',
|
| 138 |
+
'ori_shape',
|
| 139 |
+
'img_shape',
|
| 140 |
+
'scale_factor',
|
| 141 |
+
)),
|
| 142 |
+
]
|
| 143 |
+
train_dataloader = dict(
|
| 144 |
+
batch_size=64,
|
| 145 |
+
num_workers=2,
|
| 146 |
+
persistent_workers=True,
|
| 147 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
| 148 |
+
batch_sampler=None,
|
| 149 |
+
dataset=dict(
|
| 150 |
+
type='CocoDataset',
|
| 151 |
+
metainfo=dict(classes=('airplane', ), palette=[
|
| 152 |
+
(
|
| 153 |
+
220,
|
| 154 |
+
20,
|
| 155 |
+
60,
|
| 156 |
+
),
|
| 157 |
+
]),
|
| 158 |
+
data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
|
| 159 |
+
ann_file='train/__coco.json',
|
| 160 |
+
data_prefix=dict(img='train/'),
|
| 161 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
| 162 |
+
pipeline=[
|
| 163 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 164 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 165 |
+
dict(
|
| 166 |
+
type='CachedMosaic',
|
| 167 |
+
img_scale=(
|
| 168 |
+
640,
|
| 169 |
+
640,
|
| 170 |
+
),
|
| 171 |
+
pad_val=114.0,
|
| 172 |
+
max_cached_images=20,
|
| 173 |
+
random_pop=False),
|
| 174 |
+
dict(
|
| 175 |
+
type='RandomResize',
|
| 176 |
+
scale=(
|
| 177 |
+
1280,
|
| 178 |
+
1280,
|
| 179 |
+
),
|
| 180 |
+
ratio_range=(
|
| 181 |
+
0.5,
|
| 182 |
+
2.0,
|
| 183 |
+
),
|
| 184 |
+
keep_ratio=True),
|
| 185 |
+
dict(type='RandomCrop', crop_size=(
|
| 186 |
+
640,
|
| 187 |
+
640,
|
| 188 |
+
)),
|
| 189 |
+
dict(type='YOLOXHSVRandomAug'),
|
| 190 |
+
dict(type='RandomFlip', prob=0.5),
|
| 191 |
+
dict(
|
| 192 |
+
type='Pad',
|
| 193 |
+
size=(
|
| 194 |
+
640,
|
| 195 |
+
640,
|
| 196 |
+
),
|
| 197 |
+
pad_val=dict(img=(
|
| 198 |
+
114,
|
| 199 |
+
114,
|
| 200 |
+
114,
|
| 201 |
+
))),
|
| 202 |
+
dict(
|
| 203 |
+
type='CachedMixUp',
|
| 204 |
+
img_scale=(
|
| 205 |
+
640,
|
| 206 |
+
640,
|
| 207 |
+
),
|
| 208 |
+
ratio_range=(
|
| 209 |
+
1.0,
|
| 210 |
+
1.0,
|
| 211 |
+
),
|
| 212 |
+
max_cached_images=10,
|
| 213 |
+
random_pop=False,
|
| 214 |
+
pad_val=(
|
| 215 |
+
114,
|
| 216 |
+
114,
|
| 217 |
+
114,
|
| 218 |
+
),
|
| 219 |
+
prob=0.5),
|
| 220 |
+
dict(type='PackDetInputs'),
|
| 221 |
+
],
|
| 222 |
+
backend_args=None),
|
| 223 |
+
pin_memory=True)
|
| 224 |
+
val_dataloader = dict(
|
| 225 |
+
batch_size=64,
|
| 226 |
+
num_workers=2,
|
| 227 |
+
persistent_workers=True,
|
| 228 |
+
drop_last=False,
|
| 229 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 230 |
+
dataset=dict(
|
| 231 |
+
type='CocoDataset',
|
| 232 |
+
metainfo=dict(classes=('airplane', ), palette=[
|
| 233 |
+
(
|
| 234 |
+
220,
|
| 235 |
+
20,
|
| 236 |
+
60,
|
| 237 |
+
),
|
| 238 |
+
]),
|
| 239 |
+
data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
|
| 240 |
+
ann_file='val/__coco.json',
|
| 241 |
+
data_prefix=dict(img='val/'),
|
| 242 |
+
test_mode=True,
|
| 243 |
+
pipeline=[
|
| 244 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 245 |
+
dict(type='Resize', scale=(
|
| 246 |
+
640,
|
| 247 |
+
640,
|
| 248 |
+
), keep_ratio=True),
|
| 249 |
+
dict(
|
| 250 |
+
type='Pad',
|
| 251 |
+
size=(
|
| 252 |
+
640,
|
| 253 |
+
640,
|
| 254 |
+
),
|
| 255 |
+
pad_val=dict(img=(
|
| 256 |
+
114,
|
| 257 |
+
114,
|
| 258 |
+
114,
|
| 259 |
+
))),
|
| 260 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 261 |
+
dict(
|
| 262 |
+
type='PackDetInputs',
|
| 263 |
+
meta_keys=(
|
| 264 |
+
'img_id',
|
| 265 |
+
'img_path',
|
| 266 |
+
'ori_shape',
|
| 267 |
+
'img_shape',
|
| 268 |
+
'scale_factor',
|
| 269 |
+
)),
|
| 270 |
+
],
|
| 271 |
+
backend_args=None))
|
| 272 |
+
test_dataloader = dict(
|
| 273 |
+
batch_size=64,
|
| 274 |
+
num_workers=2,
|
| 275 |
+
persistent_workers=True,
|
| 276 |
+
drop_last=False,
|
| 277 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 278 |
+
dataset=dict(
|
| 279 |
+
type='CocoDataset',
|
| 280 |
+
metainfo=dict(classes=('airplane', ), palette=[
|
| 281 |
+
(
|
| 282 |
+
220,
|
| 283 |
+
20,
|
| 284 |
+
60,
|
| 285 |
+
),
|
| 286 |
+
]),
|
| 287 |
+
data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
|
| 288 |
+
ann_file='test/__coco.json',
|
| 289 |
+
data_prefix=dict(img='test/'),
|
| 290 |
+
test_mode=True,
|
| 291 |
+
pipeline=[
|
| 292 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 293 |
+
dict(type='Resize', scale=(
|
| 294 |
+
640,
|
| 295 |
+
640,
|
| 296 |
+
), keep_ratio=True),
|
| 297 |
+
dict(
|
| 298 |
+
type='Pad',
|
| 299 |
+
size=(
|
| 300 |
+
640,
|
| 301 |
+
640,
|
| 302 |
+
),
|
| 303 |
+
pad_val=dict(img=(
|
| 304 |
+
114,
|
| 305 |
+
114,
|
| 306 |
+
114,
|
| 307 |
+
))),
|
| 308 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 309 |
+
dict(
|
| 310 |
+
type='PackDetInputs',
|
| 311 |
+
meta_keys=(
|
| 312 |
+
'img_id',
|
| 313 |
+
'img_path',
|
| 314 |
+
'ori_shape',
|
| 315 |
+
'img_shape',
|
| 316 |
+
'scale_factor',
|
| 317 |
+
)),
|
| 318 |
+
],
|
| 319 |
+
backend_args=None))
|
| 320 |
+
val_evaluator = dict(
|
| 321 |
+
type='CocoMetric',
|
| 322 |
+
ann_file='/home/safouane/Downloads/benchmark_aircraft/data/val/__coco.json',
|
| 323 |
+
metric='bbox',
|
| 324 |
+
format_only=False,
|
| 325 |
+
backend_args=None)
|
| 326 |
+
test_evaluator = dict(
|
| 327 |
+
type='CocoMetric',
|
| 328 |
+
ann_file=
|
| 329 |
+
'/home/safouane/Downloads/benchmark_aircraft/data/test/__coco.json',
|
| 330 |
+
metric='bbox',
|
| 331 |
+
format_only=False,
|
| 332 |
+
backend_args=None)
|
| 333 |
+
tta_model = dict(
|
| 334 |
+
type='DetTTAModel',
|
| 335 |
+
tta_cfg=dict(nms=dict(type='nms', iou_threshold=0.6), max_per_img=100))
|
| 336 |
+
img_scales = [
|
| 337 |
+
(
|
| 338 |
+
640,
|
| 339 |
+
640,
|
| 340 |
+
),
|
| 341 |
+
(
|
| 342 |
+
320,
|
| 343 |
+
320,
|
| 344 |
+
),
|
| 345 |
+
(
|
| 346 |
+
960,
|
| 347 |
+
960,
|
| 348 |
+
),
|
| 349 |
+
]
|
| 350 |
+
tta_pipeline = [
|
| 351 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 352 |
+
dict(
|
| 353 |
+
type='TestTimeAug',
|
| 354 |
+
transforms=[
|
| 355 |
+
[
|
| 356 |
+
dict(type='Resize', scale=(
|
| 357 |
+
640,
|
| 358 |
+
640,
|
| 359 |
+
), keep_ratio=True),
|
| 360 |
+
dict(type='Resize', scale=(
|
| 361 |
+
320,
|
| 362 |
+
320,
|
| 363 |
+
), keep_ratio=True),
|
| 364 |
+
dict(type='Resize', scale=(
|
| 365 |
+
960,
|
| 366 |
+
960,
|
| 367 |
+
), keep_ratio=True),
|
| 368 |
+
],
|
| 369 |
+
[
|
| 370 |
+
dict(type='RandomFlip', prob=1.0),
|
| 371 |
+
dict(type='RandomFlip', prob=0.0),
|
| 372 |
+
],
|
| 373 |
+
[
|
| 374 |
+
dict(
|
| 375 |
+
type='Pad',
|
| 376 |
+
size=(
|
| 377 |
+
960,
|
| 378 |
+
960,
|
| 379 |
+
),
|
| 380 |
+
pad_val=dict(img=(
|
| 381 |
+
114,
|
| 382 |
+
114,
|
| 383 |
+
114,
|
| 384 |
+
))),
|
| 385 |
+
],
|
| 386 |
+
[
|
| 387 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 388 |
+
],
|
| 389 |
+
[
|
| 390 |
+
dict(
|
| 391 |
+
type='PackDetInputs',
|
| 392 |
+
meta_keys=(
|
| 393 |
+
'img_id',
|
| 394 |
+
'img_path',
|
| 395 |
+
'ori_shape',
|
| 396 |
+
'img_shape',
|
| 397 |
+
'scale_factor',
|
| 398 |
+
'flip',
|
| 399 |
+
'flip_direction',
|
| 400 |
+
)),
|
| 401 |
+
],
|
| 402 |
+
]),
|
| 403 |
+
]
|
| 404 |
+
model = dict(
|
| 405 |
+
type='RTMDet',
|
| 406 |
+
data_preprocessor=dict(
|
| 407 |
+
type='DetDataPreprocessor',
|
| 408 |
+
mean=[
|
| 409 |
+
103.53,
|
| 410 |
+
116.28,
|
| 411 |
+
123.675,
|
| 412 |
+
],
|
| 413 |
+
std=[
|
| 414 |
+
57.375,
|
| 415 |
+
57.12,
|
| 416 |
+
58.395,
|
| 417 |
+
],
|
| 418 |
+
bgr_to_rgb=False,
|
| 419 |
+
batch_augments=None),
|
| 420 |
+
backbone=dict(
|
| 421 |
+
type='CSPNeXt',
|
| 422 |
+
arch='P5',
|
| 423 |
+
expand_ratio=0.5,
|
| 424 |
+
deepen_factor=0.167,
|
| 425 |
+
widen_factor=0.375,
|
| 426 |
+
channel_attention=True,
|
| 427 |
+
norm_cfg=dict(type='SyncBN'),
|
| 428 |
+
act_cfg=dict(type='SiLU', inplace=True),
|
| 429 |
+
init_cfg=dict(
|
| 430 |
+
type='Pretrained',
|
| 431 |
+
prefix='backbone.',
|
| 432 |
+
checkpoint=
|
| 433 |
+
'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e.pth'
|
| 434 |
+
)),
|
| 435 |
+
neck=dict(
|
| 436 |
+
type='CSPNeXtPAFPN',
|
| 437 |
+
in_channels=[
|
| 438 |
+
96,
|
| 439 |
+
192,
|
| 440 |
+
384,
|
| 441 |
+
],
|
| 442 |
+
out_channels=96,
|
| 443 |
+
num_csp_blocks=1,
|
| 444 |
+
expand_ratio=0.5,
|
| 445 |
+
norm_cfg=dict(type='SyncBN'),
|
| 446 |
+
act_cfg=dict(type='SiLU', inplace=True)),
|
| 447 |
+
bbox_head=dict(
|
| 448 |
+
type='RTMDetSepBNHead',
|
| 449 |
+
num_classes=1,
|
| 450 |
+
in_channels=96,
|
| 451 |
+
stacked_convs=2,
|
| 452 |
+
feat_channels=96,
|
| 453 |
+
anchor_generator=dict(
|
| 454 |
+
type='MlvlPointGenerator', offset=0, strides=[
|
| 455 |
+
8,
|
| 456 |
+
16,
|
| 457 |
+
32,
|
| 458 |
+
]),
|
| 459 |
+
bbox_coder=dict(type='DistancePointBBoxCoder'),
|
| 460 |
+
loss_cls=dict(
|
| 461 |
+
type='QualityFocalLoss',
|
| 462 |
+
use_sigmoid=True,
|
| 463 |
+
beta=2.0,
|
| 464 |
+
loss_weight=1.0),
|
| 465 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
|
| 466 |
+
with_objectness=False,
|
| 467 |
+
exp_on_reg=False,
|
| 468 |
+
share_conv=True,
|
| 469 |
+
pred_kernel_size=1,
|
| 470 |
+
norm_cfg=dict(type='SyncBN'),
|
| 471 |
+
act_cfg=dict(type='SiLU', inplace=True)),
|
| 472 |
+
train_cfg=dict(
|
| 473 |
+
assigner=dict(type='DynamicSoftLabelAssigner', topk=13),
|
| 474 |
+
allowed_border=-1,
|
| 475 |
+
pos_weight=-1,
|
| 476 |
+
debug=False),
|
| 477 |
+
test_cfg=dict(
|
| 478 |
+
nms_pre=30000,
|
| 479 |
+
min_bbox_size=0,
|
| 480 |
+
score_thr=0.001,
|
| 481 |
+
nms=dict(type='nms', iou_threshold=0.65),
|
| 482 |
+
max_per_img=300))
|
| 483 |
+
train_pipeline_stage2 = [
|
| 484 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 485 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 486 |
+
dict(
|
| 487 |
+
type='RandomResize',
|
| 488 |
+
scale=(
|
| 489 |
+
640,
|
| 490 |
+
640,
|
| 491 |
+
),
|
| 492 |
+
ratio_range=(
|
| 493 |
+
0.5,
|
| 494 |
+
2.0,
|
| 495 |
+
),
|
| 496 |
+
keep_ratio=True),
|
| 497 |
+
dict(type='RandomCrop', crop_size=(
|
| 498 |
+
640,
|
| 499 |
+
640,
|
| 500 |
+
)),
|
| 501 |
+
dict(type='YOLOXHSVRandomAug'),
|
| 502 |
+
dict(type='RandomFlip', prob=0.5),
|
| 503 |
+
dict(type='Pad', size=(
|
| 504 |
+
640,
|
| 505 |
+
640,
|
| 506 |
+
), pad_val=dict(img=(
|
| 507 |
+
114,
|
| 508 |
+
114,
|
| 509 |
+
114,
|
| 510 |
+
))),
|
| 511 |
+
dict(type='PackDetInputs'),
|
| 512 |
+
]
|
| 513 |
+
stage2_num_epochs = 20
|
| 514 |
+
base_lr = 0.004
|
| 515 |
+
interval = 10
|
| 516 |
+
custom_hooks = [
|
| 517 |
+
dict(
|
| 518 |
+
type='EMAHook',
|
| 519 |
+
ema_type='ExpMomentumEMA',
|
| 520 |
+
momentum=0.0002,
|
| 521 |
+
update_buffers=True,
|
| 522 |
+
priority=49),
|
| 523 |
+
dict(
|
| 524 |
+
type='PipelineSwitchHook',
|
| 525 |
+
switch_epoch=280,
|
| 526 |
+
switch_pipeline=[
|
| 527 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 528 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 529 |
+
dict(
|
| 530 |
+
type='RandomResize',
|
| 531 |
+
scale=(
|
| 532 |
+
640,
|
| 533 |
+
640,
|
| 534 |
+
),
|
| 535 |
+
ratio_range=(
|
| 536 |
+
0.5,
|
| 537 |
+
2.0,
|
| 538 |
+
),
|
| 539 |
+
keep_ratio=True),
|
| 540 |
+
dict(type='RandomCrop', crop_size=(
|
| 541 |
+
640,
|
| 542 |
+
640,
|
| 543 |
+
)),
|
| 544 |
+
dict(type='YOLOXHSVRandomAug'),
|
| 545 |
+
dict(type='RandomFlip', prob=0.5),
|
| 546 |
+
dict(
|
| 547 |
+
type='Pad',
|
| 548 |
+
size=(
|
| 549 |
+
640,
|
| 550 |
+
640,
|
| 551 |
+
),
|
| 552 |
+
pad_val=dict(img=(
|
| 553 |
+
114,
|
| 554 |
+
114,
|
| 555 |
+
114,
|
| 556 |
+
))),
|
| 557 |
+
dict(type='PackDetInputs'),
|
| 558 |
+
]),
|
| 559 |
+
]
|
| 560 |
+
checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e.pth'
|
| 561 |
+
launcher = 'none'
|
| 562 |
+
work_dir = './work_dirs/rtmdet_tiny_8xb32-300e_coco'
|
inference/ssd_config.py
ADDED
|
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
dataset_type = 'CocoDataset'
|
| 2 |
+
data_root = '/home/safouane/Downloads/benchmark_aircraft/data/'
|
| 3 |
+
backend_args = None
|
| 4 |
+
max_epochs = 500
|
| 5 |
+
metainfo = dict(
|
| 6 |
+
classes=('airplane', ), palette=[
|
| 7 |
+
(
|
| 8 |
+
0,
|
| 9 |
+
0,
|
| 10 |
+
255,
|
| 11 |
+
),
|
| 12 |
+
])
|
| 13 |
+
num_classes = 1
|
| 14 |
+
batch_size = 128
|
| 15 |
+
train_pipeline = [
|
| 16 |
+
dict(type='LoadImageFromFile'),
|
| 17 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 18 |
+
dict(
|
| 19 |
+
type='Expand',
|
| 20 |
+
mean=[
|
| 21 |
+
123.675,
|
| 22 |
+
116.28,
|
| 23 |
+
103.53,
|
| 24 |
+
],
|
| 25 |
+
to_rgb=True,
|
| 26 |
+
ratio_range=(
|
| 27 |
+
1,
|
| 28 |
+
4,
|
| 29 |
+
)),
|
| 30 |
+
dict(
|
| 31 |
+
type='MinIoURandomCrop',
|
| 32 |
+
min_ious=(
|
| 33 |
+
0.1,
|
| 34 |
+
0.3,
|
| 35 |
+
0.5,
|
| 36 |
+
0.7,
|
| 37 |
+
0.9,
|
| 38 |
+
),
|
| 39 |
+
min_crop_size=0.3),
|
| 40 |
+
dict(type='Resize', scale=(
|
| 41 |
+
320,
|
| 42 |
+
320,
|
| 43 |
+
), keep_ratio=False),
|
| 44 |
+
dict(type='RandomFlip', prob=0.5),
|
| 45 |
+
dict(
|
| 46 |
+
type='PhotoMetricDistortion',
|
| 47 |
+
brightness_delta=32,
|
| 48 |
+
contrast_range=(
|
| 49 |
+
0.5,
|
| 50 |
+
1.5,
|
| 51 |
+
),
|
| 52 |
+
saturation_range=(
|
| 53 |
+
0.5,
|
| 54 |
+
1.5,
|
| 55 |
+
),
|
| 56 |
+
hue_delta=18),
|
| 57 |
+
dict(type='PackDetInputs'),
|
| 58 |
+
]
|
| 59 |
+
test_pipeline = [
|
| 60 |
+
dict(type='LoadImageFromFile'),
|
| 61 |
+
dict(type='Resize', scale=(
|
| 62 |
+
320,
|
| 63 |
+
320,
|
| 64 |
+
), keep_ratio=False),
|
| 65 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 66 |
+
dict(
|
| 67 |
+
type='PackDetInputs',
|
| 68 |
+
meta_keys=(
|
| 69 |
+
'img_id',
|
| 70 |
+
'img_path',
|
| 71 |
+
'ori_shape',
|
| 72 |
+
'img_shape',
|
| 73 |
+
'scale_factor',
|
| 74 |
+
)),
|
| 75 |
+
]
|
| 76 |
+
train_dataloader = dict(
|
| 77 |
+
batch_size=128,
|
| 78 |
+
num_workers=2,
|
| 79 |
+
persistent_workers=True,
|
| 80 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
| 81 |
+
batch_sampler=None,
|
| 82 |
+
dataset=dict(
|
| 83 |
+
type='RepeatDataset',
|
| 84 |
+
times=5,
|
| 85 |
+
dataset=dict(
|
| 86 |
+
type='CocoDataset',
|
| 87 |
+
metainfo=dict(classes=('airplane', ), palette=[
|
| 88 |
+
(
|
| 89 |
+
220,
|
| 90 |
+
20,
|
| 91 |
+
60,
|
| 92 |
+
),
|
| 93 |
+
]),
|
| 94 |
+
data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
|
| 95 |
+
ann_file='train/__coco.json',
|
| 96 |
+
data_prefix=dict(img='train/'),
|
| 97 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
| 98 |
+
pipeline=[
|
| 99 |
+
dict(type='LoadImageFromFile'),
|
| 100 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 101 |
+
dict(
|
| 102 |
+
type='Expand',
|
| 103 |
+
mean=[
|
| 104 |
+
123.675,
|
| 105 |
+
116.28,
|
| 106 |
+
103.53,
|
| 107 |
+
],
|
| 108 |
+
to_rgb=True,
|
| 109 |
+
ratio_range=(
|
| 110 |
+
1,
|
| 111 |
+
4,
|
| 112 |
+
)),
|
| 113 |
+
dict(
|
| 114 |
+
type='MinIoURandomCrop',
|
| 115 |
+
min_ious=(
|
| 116 |
+
0.1,
|
| 117 |
+
0.3,
|
| 118 |
+
0.5,
|
| 119 |
+
0.7,
|
| 120 |
+
0.9,
|
| 121 |
+
),
|
| 122 |
+
min_crop_size=0.3),
|
| 123 |
+
dict(type='Resize', scale=(
|
| 124 |
+
320,
|
| 125 |
+
320,
|
| 126 |
+
), keep_ratio=False),
|
| 127 |
+
dict(type='RandomFlip', prob=0.5),
|
| 128 |
+
dict(
|
| 129 |
+
type='PhotoMetricDistortion',
|
| 130 |
+
brightness_delta=32,
|
| 131 |
+
contrast_range=(
|
| 132 |
+
0.5,
|
| 133 |
+
1.5,
|
| 134 |
+
),
|
| 135 |
+
saturation_range=(
|
| 136 |
+
0.5,
|
| 137 |
+
1.5,
|
| 138 |
+
),
|
| 139 |
+
hue_delta=18),
|
| 140 |
+
dict(type='PackDetInputs'),
|
| 141 |
+
])))
|
| 142 |
+
val_dataloader = dict(
|
| 143 |
+
batch_size=128,
|
| 144 |
+
num_workers=2,
|
| 145 |
+
persistent_workers=True,
|
| 146 |
+
drop_last=False,
|
| 147 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 148 |
+
dataset=dict(
|
| 149 |
+
type='CocoDataset',
|
| 150 |
+
metainfo=dict(classes=('airplane', ), palette=[
|
| 151 |
+
(
|
| 152 |
+
220,
|
| 153 |
+
20,
|
| 154 |
+
60,
|
| 155 |
+
),
|
| 156 |
+
]),
|
| 157 |
+
data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
|
| 158 |
+
ann_file='val/__coco.json',
|
| 159 |
+
data_prefix=dict(img='val/'),
|
| 160 |
+
test_mode=True,
|
| 161 |
+
pipeline=[
|
| 162 |
+
dict(type='LoadImageFromFile'),
|
| 163 |
+
dict(type='Resize', scale=(
|
| 164 |
+
320,
|
| 165 |
+
320,
|
| 166 |
+
), keep_ratio=False),
|
| 167 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 168 |
+
dict(
|
| 169 |
+
type='PackDetInputs',
|
| 170 |
+
meta_keys=(
|
| 171 |
+
'img_id',
|
| 172 |
+
'img_path',
|
| 173 |
+
'ori_shape',
|
| 174 |
+
'img_shape',
|
| 175 |
+
'scale_factor',
|
| 176 |
+
)),
|
| 177 |
+
],
|
| 178 |
+
backend_args=None))
|
| 179 |
+
test_dataloader = dict(
|
| 180 |
+
batch_size=128,
|
| 181 |
+
num_workers=2,
|
| 182 |
+
persistent_workers=True,
|
| 183 |
+
drop_last=False,
|
| 184 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 185 |
+
dataset=dict(
|
| 186 |
+
type='CocoDataset',
|
| 187 |
+
metainfo=dict(classes=('airplane', ), palette=[
|
| 188 |
+
(
|
| 189 |
+
220,
|
| 190 |
+
20,
|
| 191 |
+
60,
|
| 192 |
+
),
|
| 193 |
+
]),
|
| 194 |
+
data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
|
| 195 |
+
ann_file='test/__coco.json',
|
| 196 |
+
data_prefix=dict(img='test/'),
|
| 197 |
+
test_mode=True,
|
| 198 |
+
pipeline=[
|
| 199 |
+
dict(type='LoadImageFromFile'),
|
| 200 |
+
dict(type='Resize', scale=(
|
| 201 |
+
320,
|
| 202 |
+
320,
|
| 203 |
+
), keep_ratio=False),
|
| 204 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 205 |
+
dict(
|
| 206 |
+
type='PackDetInputs',
|
| 207 |
+
meta_keys=(
|
| 208 |
+
'img_id',
|
| 209 |
+
'img_path',
|
| 210 |
+
'ori_shape',
|
| 211 |
+
'img_shape',
|
| 212 |
+
'scale_factor',
|
| 213 |
+
)),
|
| 214 |
+
],
|
| 215 |
+
backend_args=None))
|
| 216 |
+
val_evaluator = dict(
|
| 217 |
+
type='CocoMetric',
|
| 218 |
+
ann_file='/home/safouane/Downloads/benchmark_aircraft/data/val/__coco.json',
|
| 219 |
+
metric='bbox',
|
| 220 |
+
format_only=False,
|
| 221 |
+
backend_args=None)
|
| 222 |
+
test_evaluator = dict(
|
| 223 |
+
type='CocoMetric',
|
| 224 |
+
ann_file=
|
| 225 |
+
'/home/safouane/Downloads/benchmark_aircraft/data/test/__coco.json',
|
| 226 |
+
metric='bbox',
|
| 227 |
+
format_only=False,
|
| 228 |
+
backend_args=None)
|
| 229 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=500, val_interval=1)
|
| 230 |
+
val_cfg = dict(type='ValLoop')
|
| 231 |
+
test_cfg = dict(type='TestLoop')
|
| 232 |
+
param_scheduler = [
|
| 233 |
+
dict(
|
| 234 |
+
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
|
| 235 |
+
dict(
|
| 236 |
+
type='CosineAnnealingLR',
|
| 237 |
+
begin=0,
|
| 238 |
+
T_max=120,
|
| 239 |
+
end=120,
|
| 240 |
+
by_epoch=True,
|
| 241 |
+
eta_min=0),
|
| 242 |
+
]
|
| 243 |
+
optim_wrapper = dict(
|
| 244 |
+
type='OptimWrapper',
|
| 245 |
+
optimizer=dict(type='SGD', lr=0.015, momentum=0.9, weight_decay=4e-05))
|
| 246 |
+
auto_scale_lr = dict(enable=False, base_batch_size=64)
|
| 247 |
+
default_scope = 'mmdet'
|
| 248 |
+
default_hooks = dict(
|
| 249 |
+
timer=dict(type='IterTimerHook'),
|
| 250 |
+
logger=dict(type='LoggerHook', interval=50),
|
| 251 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
| 252 |
+
checkpoint=dict(type='CheckpointHook', interval=20, save_best='auto'),
|
| 253 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
| 254 |
+
visualization=dict(type='DetVisualizationHook'))
|
| 255 |
+
env_cfg = dict(
|
| 256 |
+
cudnn_benchmark=True,
|
| 257 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
| 258 |
+
dist_cfg=dict(backend='nccl'))
|
| 259 |
+
vis_backends = [
|
| 260 |
+
dict(type='LocalVisBackend'),
|
| 261 |
+
]
|
| 262 |
+
visualizer = dict(
|
| 263 |
+
type='DetLocalVisualizer',
|
| 264 |
+
vis_backends=[
|
| 265 |
+
dict(type='LocalVisBackend'),
|
| 266 |
+
dict(type='TensorboardVisBackend'),
|
| 267 |
+
],
|
| 268 |
+
name='visualizer')
|
| 269 |
+
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
|
| 270 |
+
log_level = 'INFO'
|
| 271 |
+
load_from = '/home/safouane/Downloads/benchmark_aircraft/mmdetection/configs/ssd/checkpoints/ssdlite_mobilenetv2_scratch_600e_coco_20210629_110627-974d9307.pth'
|
| 272 |
+
resume = False
|
| 273 |
+
data_preprocessor = dict(
|
| 274 |
+
type='DetDataPreprocessor',
|
| 275 |
+
mean=[
|
| 276 |
+
123.675,
|
| 277 |
+
116.28,
|
| 278 |
+
103.53,
|
| 279 |
+
],
|
| 280 |
+
std=[
|
| 281 |
+
58.395,
|
| 282 |
+
57.12,
|
| 283 |
+
57.375,
|
| 284 |
+
],
|
| 285 |
+
bgr_to_rgb=True,
|
| 286 |
+
pad_size_divisor=1)
|
| 287 |
+
model = dict(
|
| 288 |
+
type='SingleStageDetector',
|
| 289 |
+
data_preprocessor=dict(
|
| 290 |
+
type='DetDataPreprocessor',
|
| 291 |
+
mean=[
|
| 292 |
+
123.675,
|
| 293 |
+
116.28,
|
| 294 |
+
103.53,
|
| 295 |
+
],
|
| 296 |
+
std=[
|
| 297 |
+
58.395,
|
| 298 |
+
57.12,
|
| 299 |
+
57.375,
|
| 300 |
+
],
|
| 301 |
+
bgr_to_rgb=True,
|
| 302 |
+
pad_size_divisor=1),
|
| 303 |
+
backbone=dict(
|
| 304 |
+
type='MobileNetV2',
|
| 305 |
+
out_indices=(
|
| 306 |
+
4,
|
| 307 |
+
7,
|
| 308 |
+
),
|
| 309 |
+
norm_cfg=dict(type='BN', eps=0.001, momentum=0.03),
|
| 310 |
+
init_cfg=dict(type='TruncNormal', layer='Conv2d', std=0.03)),
|
| 311 |
+
neck=dict(
|
| 312 |
+
type='SSDNeck',
|
| 313 |
+
in_channels=(
|
| 314 |
+
96,
|
| 315 |
+
1280,
|
| 316 |
+
),
|
| 317 |
+
out_channels=(
|
| 318 |
+
96,
|
| 319 |
+
1280,
|
| 320 |
+
512,
|
| 321 |
+
256,
|
| 322 |
+
256,
|
| 323 |
+
128,
|
| 324 |
+
),
|
| 325 |
+
level_strides=(
|
| 326 |
+
2,
|
| 327 |
+
2,
|
| 328 |
+
2,
|
| 329 |
+
2,
|
| 330 |
+
),
|
| 331 |
+
level_paddings=(
|
| 332 |
+
1,
|
| 333 |
+
1,
|
| 334 |
+
1,
|
| 335 |
+
1,
|
| 336 |
+
),
|
| 337 |
+
l2_norm_scale=None,
|
| 338 |
+
use_depthwise=True,
|
| 339 |
+
norm_cfg=dict(type='BN', eps=0.001, momentum=0.03),
|
| 340 |
+
act_cfg=dict(type='ReLU6'),
|
| 341 |
+
init_cfg=dict(type='TruncNormal', layer='Conv2d', std=0.03)),
|
| 342 |
+
bbox_head=dict(
|
| 343 |
+
type='SSDHead',
|
| 344 |
+
in_channels=(
|
| 345 |
+
96,
|
| 346 |
+
1280,
|
| 347 |
+
512,
|
| 348 |
+
256,
|
| 349 |
+
256,
|
| 350 |
+
128,
|
| 351 |
+
),
|
| 352 |
+
num_classes=1,
|
| 353 |
+
use_depthwise=True,
|
| 354 |
+
norm_cfg=dict(type='BN', eps=0.001, momentum=0.03),
|
| 355 |
+
act_cfg=dict(type='ReLU6'),
|
| 356 |
+
init_cfg=dict(type='Normal', layer='Conv2d', std=0.001),
|
| 357 |
+
anchor_generator=dict(
|
| 358 |
+
type='SSDAnchorGenerator',
|
| 359 |
+
scale_major=False,
|
| 360 |
+
strides=[
|
| 361 |
+
16,
|
| 362 |
+
32,
|
| 363 |
+
64,
|
| 364 |
+
107,
|
| 365 |
+
160,
|
| 366 |
+
320,
|
| 367 |
+
],
|
| 368 |
+
ratios=[
|
| 369 |
+
[
|
| 370 |
+
2,
|
| 371 |
+
3,
|
| 372 |
+
],
|
| 373 |
+
[
|
| 374 |
+
2,
|
| 375 |
+
3,
|
| 376 |
+
],
|
| 377 |
+
[
|
| 378 |
+
2,
|
| 379 |
+
3,
|
| 380 |
+
],
|
| 381 |
+
[
|
| 382 |
+
2,
|
| 383 |
+
3,
|
| 384 |
+
],
|
| 385 |
+
[
|
| 386 |
+
2,
|
| 387 |
+
3,
|
| 388 |
+
],
|
| 389 |
+
[
|
| 390 |
+
2,
|
| 391 |
+
3,
|
| 392 |
+
],
|
| 393 |
+
],
|
| 394 |
+
min_sizes=[
|
| 395 |
+
48,
|
| 396 |
+
100,
|
| 397 |
+
150,
|
| 398 |
+
202,
|
| 399 |
+
253,
|
| 400 |
+
304,
|
| 401 |
+
],
|
| 402 |
+
max_sizes=[
|
| 403 |
+
100,
|
| 404 |
+
150,
|
| 405 |
+
202,
|
| 406 |
+
253,
|
| 407 |
+
304,
|
| 408 |
+
320,
|
| 409 |
+
]),
|
| 410 |
+
bbox_coder=dict(
|
| 411 |
+
type='DeltaXYWHBBoxCoder',
|
| 412 |
+
target_means=[
|
| 413 |
+
0.0,
|
| 414 |
+
0.0,
|
| 415 |
+
0.0,
|
| 416 |
+
0.0,
|
| 417 |
+
],
|
| 418 |
+
target_stds=[
|
| 419 |
+
0.1,
|
| 420 |
+
0.1,
|
| 421 |
+
0.2,
|
| 422 |
+
0.2,
|
| 423 |
+
])),
|
| 424 |
+
train_cfg=dict(
|
| 425 |
+
assigner=dict(
|
| 426 |
+
type='MaxIoUAssigner',
|
| 427 |
+
pos_iou_thr=0.5,
|
| 428 |
+
neg_iou_thr=0.5,
|
| 429 |
+
min_pos_iou=0.0,
|
| 430 |
+
ignore_iof_thr=-1,
|
| 431 |
+
gt_max_assign_all=False),
|
| 432 |
+
sampler=dict(type='PseudoSampler'),
|
| 433 |
+
smoothl1_beta=1.0,
|
| 434 |
+
allowed_border=-1,
|
| 435 |
+
pos_weight=-1,
|
| 436 |
+
neg_pos_ratio=3,
|
| 437 |
+
debug=False),
|
| 438 |
+
test_cfg=dict(
|
| 439 |
+
nms_pre=1000,
|
| 440 |
+
nms=dict(type='nms', iou_threshold=0.45),
|
| 441 |
+
min_bbox_size=0,
|
| 442 |
+
score_thr=0.02,
|
| 443 |
+
max_per_img=200))
|
| 444 |
+
input_size = 320
|
| 445 |
+
custom_hooks = [
|
| 446 |
+
dict(type='NumClassCheckHook'),
|
| 447 |
+
dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW'),
|
| 448 |
+
]
|
| 449 |
+
launcher = 'none'
|
| 450 |
+
work_dir = './work_dirs/ssdlite_mobilenetv2-scratch_8xb24-600e_coco'
|
requirements.txt
ADDED
|
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
absl-py==1.3.0
|
| 2 |
+
addict==2.4.0
|
| 3 |
+
aiofiles==23.2.1
|
| 4 |
+
aiohttp==3.8.3
|
| 5 |
+
aiosignal==1.3.1
|
| 6 |
+
aliyun-python-sdk-core==2.15.0
|
| 7 |
+
aliyun-python-sdk-kms==2.16.2
|
| 8 |
+
altair==5.3.0
|
| 9 |
+
annotated-types==0.6.0
|
| 10 |
+
anyio==4.3.0
|
| 11 |
+
apispec==6.0.2
|
| 12 |
+
apispec-webframeworks==0.5.2
|
| 13 |
+
asttokens==2.1.0
|
| 14 |
+
astunparse==1.6.3
|
| 15 |
+
async-timeout==4.0.2
|
| 16 |
+
attrs==22.2.0
|
| 17 |
+
backcall==0.2.0
|
| 18 |
+
bidict==0.22.1
|
| 19 |
+
bleach==4.1.0
|
| 20 |
+
blessed==1.20.0
|
| 21 |
+
blis==0.7.9
|
| 22 |
+
Brotli @ file:///tmp/abs_ecyw11_7ze/croots/recipe/brotli-split_1659616059936/work
|
| 23 |
+
cachelib==0.10.2
|
| 24 |
+
cachetools==5.2.0
|
| 25 |
+
catalogue==2.0.8
|
| 26 |
+
certifi @ file:///croot/certifi_1707229174982/work/certifi
|
| 27 |
+
cffi==1.15.1
|
| 28 |
+
charset-normalizer==2.1.1
|
| 29 |
+
click==8.1.7
|
| 30 |
+
cmake==3.27.1
|
| 31 |
+
colorama==0.4.6
|
| 32 |
+
confection==0.0.3
|
| 33 |
+
contourpy==1.0.6
|
| 34 |
+
crcmod==1.7
|
| 35 |
+
cryptography==42.0.5
|
| 36 |
+
cycler==0.12.1
|
| 37 |
+
cymem==2.0.7
|
| 38 |
+
debugpy==1.6.3
|
| 39 |
+
decorator==5.1.1
|
| 40 |
+
dill==0.3.8
|
| 41 |
+
dnspython==2.2.1
|
| 42 |
+
entrypoints==0.4
|
| 43 |
+
etils==0.9.0
|
| 44 |
+
eventlet==0.33.3
|
| 45 |
+
exceptiongroup==1.2.0
|
| 46 |
+
executing==1.2.0
|
| 47 |
+
fastai==2.7.10
|
| 48 |
+
fastapi==0.110.1
|
| 49 |
+
fastcore==1.5.27
|
| 50 |
+
fastdownload==0.0.7
|
| 51 |
+
fastprogress==1.0.3
|
| 52 |
+
ffmpy==0.3.2
|
| 53 |
+
filelock==3.12.2
|
| 54 |
+
Flask==2.2.3
|
| 55 |
+
flask-cloudflared==0.0.10
|
| 56 |
+
flask-ngrok==0.0.25
|
| 57 |
+
Flask-Session==0.4.0
|
| 58 |
+
Flask-SocketIO==5.3.2
|
| 59 |
+
fonttools==4.38.0
|
| 60 |
+
frozenlist==1.3.3
|
| 61 |
+
fsspec==2023.6.0
|
| 62 |
+
gitdb==4.0.10
|
| 63 |
+
GitPython==3.1.31
|
| 64 |
+
gmpy2 @ file:///tmp/build/80754af9/gmpy2_1645455532332/work
|
| 65 |
+
google-pasta==0.2.0
|
| 66 |
+
googleapis-common-protos==1.57.0
|
| 67 |
+
gpustat==1.1
|
| 68 |
+
gradio==4.26.0
|
| 69 |
+
gradio_client==0.15.1
|
| 70 |
+
grpcio==1.50.0
|
| 71 |
+
h11==0.14.0
|
| 72 |
+
h5py==2.10.0
|
| 73 |
+
httpcore==1.0.5
|
| 74 |
+
httpx==0.27.0
|
| 75 |
+
huggingface-hub==0.22.2
|
| 76 |
+
HyperPyYAML==1.2.1
|
| 77 |
+
idna @ file:///croot/idna_1666125576474/work
|
| 78 |
+
importlib-resources==5.10.0
|
| 79 |
+
importlib_metadata==7.1.0
|
| 80 |
+
ipykernel==6.17.1
|
| 81 |
+
ipython==8.6.0
|
| 82 |
+
itsdangerous==2.1.2
|
| 83 |
+
jedi==0.18.2
|
| 84 |
+
Jinja2==3.1.2
|
| 85 |
+
jmespath==0.10.0
|
| 86 |
+
joblib==1.2.0
|
| 87 |
+
jsonschema==4.21.1
|
| 88 |
+
jsonschema-specifications==2023.12.1
|
| 89 |
+
jupyter_client==7.4.7
|
| 90 |
+
jupyter_core==5.7.2
|
| 91 |
+
kiwisolver==1.4.4
|
| 92 |
+
langcodes==3.3.0
|
| 93 |
+
libclang==14.0.6
|
| 94 |
+
lit==16.0.6
|
| 95 |
+
loguru==0.6.0
|
| 96 |
+
lupa==1.10
|
| 97 |
+
Markdown==3.4.1
|
| 98 |
+
markdown-it-py==3.0.0
|
| 99 |
+
MarkupSafe==2.1.1
|
| 100 |
+
marshmallow==3.19.0
|
| 101 |
+
matplotlib==3.7.5
|
| 102 |
+
matplotlib-inline==0.1.6
|
| 103 |
+
mdurl==0.1.2
|
| 104 |
+
mkl-fft @ file:///croot/mkl_fft_1695058164594/work
|
| 105 |
+
mkl-random @ file:///croot/mkl_random_1695059800811/work
|
| 106 |
+
mkl-service==2.4.0
|
| 107 |
+
mkultra==0.1
|
| 108 |
+
mmcv==2.1.0
|
| 109 |
+
-e git+https://github.com/open-mmlab/mmdetection.git@cfd5d3a985b0249de009b67d04f37263e11cdf3d#egg=mmdet
|
| 110 |
+
mmengine==0.10.3
|
| 111 |
+
model-index==0.1.11
|
| 112 |
+
monai==1.1.0
|
| 113 |
+
mpmath==1.3.0
|
| 114 |
+
multidict==6.0.4
|
| 115 |
+
multiprocess==0.70.15
|
| 116 |
+
murmurhash==1.0.9
|
| 117 |
+
nest-asyncio==1.5.6
|
| 118 |
+
networkx==3.0
|
| 119 |
+
nibabel==5.0.0
|
| 120 |
+
numpy @ file:///work/mkl/numpy_and_numpy_base_1682953417311/work
|
| 121 |
+
nvidia-cublas-cu11==11.10.3.66
|
| 122 |
+
nvidia-cublas-cu12==12.1.3.1
|
| 123 |
+
nvidia-cuda-cupti-cu11==11.7.101
|
| 124 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
| 125 |
+
nvidia-cuda-nvrtc-cu11==11.7.99
|
| 126 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
| 127 |
+
nvidia-cuda-runtime-cu11==11.7.99
|
| 128 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
| 129 |
+
nvidia-cudnn-cu11==8.5.0.96
|
| 130 |
+
nvidia-cudnn-cu12==8.9.2.26
|
| 131 |
+
nvidia-cufft-cu11==10.9.0.58
|
| 132 |
+
nvidia-cufft-cu12==11.0.2.54
|
| 133 |
+
nvidia-curand-cu11==10.2.10.91
|
| 134 |
+
nvidia-curand-cu12==10.3.2.106
|
| 135 |
+
nvidia-cusolver-cu11==11.4.0.1
|
| 136 |
+
nvidia-cusolver-cu12==11.4.5.107
|
| 137 |
+
nvidia-cusparse-cu11==11.7.4.91
|
| 138 |
+
nvidia-cusparse-cu12==12.1.0.106
|
| 139 |
+
nvidia-ml-py==12.535.77
|
| 140 |
+
nvidia-nccl-cu11==2.14.3
|
| 141 |
+
nvidia-nccl-cu12==2.19.3
|
| 142 |
+
nvidia-nvjitlink-cu12==12.4.127
|
| 143 |
+
nvidia-nvtx-cu11==11.7.91
|
| 144 |
+
nvidia-nvtx-cu12==12.1.105
|
| 145 |
+
opencv-python==4.9.0.80
|
| 146 |
+
opendatalab==0.0.10
|
| 147 |
+
openmim==0.3.9
|
| 148 |
+
openxlab==0.0.38
|
| 149 |
+
opt-einsum==3.3.0
|
| 150 |
+
ordered-set==4.1.0
|
| 151 |
+
orjson==3.10.0
|
| 152 |
+
oss2==2.17.0
|
| 153 |
+
packaging==24.0
|
| 154 |
+
pandas==2.0.3
|
| 155 |
+
parso==0.8.3
|
| 156 |
+
pathy==0.10.0
|
| 157 |
+
pexpect==4.9.0
|
| 158 |
+
pickleshare==0.7.5
|
| 159 |
+
pillow==10.3.0
|
| 160 |
+
pkgutil_resolve_name==1.3.10
|
| 161 |
+
platformdirs==4.2.0
|
| 162 |
+
preshed==3.0.8
|
| 163 |
+
progress==1.6
|
| 164 |
+
promise==2.3
|
| 165 |
+
prompt-toolkit==3.0.33
|
| 166 |
+
psutil==5.9.4
|
| 167 |
+
ptyprocess==0.7.0
|
| 168 |
+
pure-eval==0.2.2
|
| 169 |
+
py-cpuinfo==9.0.0
|
| 170 |
+
pyarrow==12.0.1
|
| 171 |
+
pyasn1==0.4.8
|
| 172 |
+
pyasn1-modules==0.2.8
|
| 173 |
+
pycocotools==2.0.7
|
| 174 |
+
pycparser==2.21
|
| 175 |
+
pycryptodome==3.20.0
|
| 176 |
+
pydantic==2.7.0
|
| 177 |
+
pydantic_core==2.18.1
|
| 178 |
+
pyDeprecate==0.3.1
|
| 179 |
+
pydot==1.4.2
|
| 180 |
+
pydub==0.25.1
|
| 181 |
+
Pygments==2.13.0
|
| 182 |
+
pyparsing==3.1.2
|
| 183 |
+
PySocks @ file:///tmp/build/80754af9/pysocks_1605305779399/work
|
| 184 |
+
python-dateutil==2.8.2
|
| 185 |
+
python-engineio==4.3.4
|
| 186 |
+
python-multipart==0.0.9
|
| 187 |
+
python-socketio==5.7.2
|
| 188 |
+
pytz==2023.4
|
| 189 |
+
PyWavelets==1.4.1
|
| 190 |
+
PyYAML==6.0.1
|
| 191 |
+
pyzmq==24.0.1
|
| 192 |
+
referencing==0.34.0
|
| 193 |
+
regex==2022.10.31
|
| 194 |
+
requests==2.28.2
|
| 195 |
+
requests-oauthlib==1.3.1
|
| 196 |
+
rich==13.4.2
|
| 197 |
+
rpds-py==0.18.0
|
| 198 |
+
rsa==4.9
|
| 199 |
+
ruamel.yaml==0.17.28
|
| 200 |
+
ruamel.yaml.clib==0.2.7
|
| 201 |
+
ruff==0.3.7
|
| 202 |
+
runstats==2.0.0
|
| 203 |
+
safetensors==0.3.2
|
| 204 |
+
scikit-learn==1.1.3
|
| 205 |
+
scipy==1.10.1
|
| 206 |
+
seaborn==0.12.2
|
| 207 |
+
semantic-version==2.10.0
|
| 208 |
+
sentencepiece==0.1.97
|
| 209 |
+
shapely==2.0.3
|
| 210 |
+
shellingham==1.5.4
|
| 211 |
+
six==1.16.0
|
| 212 |
+
smart-open==5.2.1
|
| 213 |
+
smmap==5.0.0
|
| 214 |
+
sniffio==1.3.1
|
| 215 |
+
soundfile==0.12.1
|
| 216 |
+
spacy==3.4.3
|
| 217 |
+
spacy-legacy==3.0.10
|
| 218 |
+
spacy-loggers==1.0.3
|
| 219 |
+
speechbrain==0.5.15
|
| 220 |
+
srsly==2.4.5
|
| 221 |
+
stack-data==0.6.1
|
| 222 |
+
starlette==0.37.2
|
| 223 |
+
sympy==1.12
|
| 224 |
+
tabulate==0.9.0
|
| 225 |
+
tensorboard-plugin-wit==1.8.1
|
| 226 |
+
tensorflow-datasets==4.7.0
|
| 227 |
+
tensorflow-examples===e2510e7de8354ea89c54ab376ce52371efb39eff-
|
| 228 |
+
tensorflow-hub==0.12.0
|
| 229 |
+
tensorflow-io-gcs-filesystem==0.28.0
|
| 230 |
+
tensorflow-metadata==1.11.0
|
| 231 |
+
termcolor==2.1.1
|
| 232 |
+
terminaltables==3.1.10
|
| 233 |
+
thinc==8.1.5
|
| 234 |
+
thop==0.1.1.post2209072238
|
| 235 |
+
threadpoolctl==3.1.0
|
| 236 |
+
toml==0.10.2
|
| 237 |
+
tomli==2.0.1
|
| 238 |
+
tomlkit==0.12.0
|
| 239 |
+
toolz==0.12.1
|
| 240 |
+
torch==2.0.1
|
| 241 |
+
torch-tb-profiler==0.4.1
|
| 242 |
+
torchaudio==2.0.2
|
| 243 |
+
torchvision==0.15.2
|
| 244 |
+
tornado==6.2
|
| 245 |
+
tqdm==4.65.2
|
| 246 |
+
traitlets==5.14.2
|
| 247 |
+
triton==2.0.0
|
| 248 |
+
typer==0.12.3
|
| 249 |
+
typing_extensions==4.11.0
|
| 250 |
+
tzdata==2023.3
|
| 251 |
+
ultralytics==8.1.47
|
| 252 |
+
urllib3==1.26.18
|
| 253 |
+
uvicorn==0.29.0
|
| 254 |
+
wasabi==0.10.1
|
| 255 |
+
wcwidth==0.2.13
|
| 256 |
+
webencodings==0.5.1
|
| 257 |
+
websockets==11.0.3
|
| 258 |
+
Werkzeug==2.2.2
|
| 259 |
+
xxhash==3.3.0
|
| 260 |
+
yapf==0.40.2
|
| 261 |
+
yarl==1.8.2
|
| 262 |
+
zipp==3.10.0
|
utils.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, ast
|
| 2 |
+
from glob import glob
|
| 3 |
+
from PIL import ImageFont, ImageDraw, Image
|
| 4 |
+
|
| 5 |
+
def process_txtfile(filename):
|
| 6 |
+
"""
|
| 7 |
+
Read txt annotations files (designed for YOLO xywh format)
|
| 8 |
+
|
| 9 |
+
Parameters:
|
| 10 |
+
filename(str): path of the txt annotation file.
|
| 11 |
+
|
| 12 |
+
Returns:
|
| 13 |
+
segments: list of bboxes in format xmin, ymin, xmax, ymax (as image ratio)
|
| 14 |
+
confs: list of confidences of the bboxes object detection
|
| 15 |
+
"""
|
| 16 |
+
segments = []
|
| 17 |
+
confs = []
|
| 18 |
+
with open(filename, 'r') as file:
|
| 19 |
+
for line in file:
|
| 20 |
+
# print(line)
|
| 21 |
+
line = line.strip().split(' ')
|
| 22 |
+
cls = int(line[0])
|
| 23 |
+
conf = line[5]
|
| 24 |
+
x, y, w, h = map(float, line[1:5])
|
| 25 |
+
x_min = x - (w / 2)
|
| 26 |
+
y_min = y - (h / 2)
|
| 27 |
+
x_max = x + (w / 2)
|
| 28 |
+
y_max = y + (h / 2)
|
| 29 |
+
segment = [x_min, y_min, x_max, y_max]
|
| 30 |
+
segments.append(segment)
|
| 31 |
+
confs.append(conf)
|
| 32 |
+
|
| 33 |
+
return segments, confs
|
| 34 |
+
|
| 35 |
+
def process_jsonfile(filename):
|
| 36 |
+
"""
|
| 37 |
+
Read json annotations files (designed for mmdetect dict format)
|
| 38 |
+
|
| 39 |
+
Parameters:
|
| 40 |
+
filename(str): path of the json annotation file.
|
| 41 |
+
|
| 42 |
+
Returns:
|
| 43 |
+
segments: bboxes in format xmin, ymin, xmax, ymax (as px coordinates)
|
| 44 |
+
confs: list of confidences of the bboxes object detection
|
| 45 |
+
"""
|
| 46 |
+
with open(filename, 'r') as file:
|
| 47 |
+
line = file.readline().strip()
|
| 48 |
+
dic = ast.literal_eval(line)
|
| 49 |
+
segments = dic['bboxes']
|
| 50 |
+
confs = dic['scores']
|
| 51 |
+
# labels = dic['labels']
|
| 52 |
+
|
| 53 |
+
return segments, confs
|
| 54 |
+
|
| 55 |
+
def lerp_color(color1, color2, t):
|
| 56 |
+
"""
|
| 57 |
+
Linearly interpolate between two RGB colors.
|
| 58 |
+
|
| 59 |
+
Parameters:
|
| 60 |
+
color1 (tuple): RGB tuple of the first color.
|
| 61 |
+
color2 (tuple): RGB tuple of the second color.
|
| 62 |
+
t (float): Interpolation factor between 0 and 1.
|
| 63 |
+
|
| 64 |
+
Returns:
|
| 65 |
+
tuple: Interpolated RGB color tuple.
|
| 66 |
+
"""
|
| 67 |
+
r = int(color1[0] + (color2[0] - color1[0]) * t)
|
| 68 |
+
g = int(color1[1] + (color2[1] - color1[1]) * t)
|
| 69 |
+
b = int(color1[2] + (color2[2] - color1[2]) * t)
|
| 70 |
+
return r, g, b
|
| 71 |
+
|
| 72 |
+
def generate_color_palette(start_color, end_color, steps):
|
| 73 |
+
"""
|
| 74 |
+
Generate an RGB color palette between two colors.
|
| 75 |
+
|
| 76 |
+
Parameters:
|
| 77 |
+
start_color (tuple): RGB tuple of the starting color.
|
| 78 |
+
end_color (tuple): RGB tuple of the ending color.
|
| 79 |
+
steps (int): Number of steps between the two colors.
|
| 80 |
+
|
| 81 |
+
Returns:
|
| 82 |
+
list: List of RGB tuples
|
| 83 |
+
"""
|
| 84 |
+
palette = []
|
| 85 |
+
for i in range(steps):
|
| 86 |
+
t = i / (steps - 1) # interpolation factor
|
| 87 |
+
color = lerp_color(start_color, end_color, t)
|
| 88 |
+
palette.append(color)
|
| 89 |
+
|
| 90 |
+
return palette
|
| 91 |
+
|
| 92 |
+
def draw_bbox(model_name, results_folder="./inference/results/", image_path="inptest.jpg"):
|
| 93 |
+
"""
|
| 94 |
+
Draw bounding boxes from mmdetect or yolo formats
|
| 95 |
+
"""
|
| 96 |
+
|
| 97 |
+
# annotations style
|
| 98 |
+
txt_color=(255, 255, 255)
|
| 99 |
+
yellow=(255, 255, 128)
|
| 100 |
+
black = (0, 0, 0)
|
| 101 |
+
steps = 11 # Step : 5%
|
| 102 |
+
# (255, 0, 0) # Red
|
| 103 |
+
# (0, 0, 255) # Blue
|
| 104 |
+
palette = generate_color_palette((255, 0, 0), (0, 0, 255), steps)
|
| 105 |
+
lw = 9
|
| 106 |
+
font = ImageFont.truetype(font="Pillow/Tests/fonts/FreeMono.ttf", size=48)
|
| 107 |
+
|
| 108 |
+
im = Image.open(image_path)
|
| 109 |
+
width, height = im.size
|
| 110 |
+
imdraw = ImageDraw.Draw(im)
|
| 111 |
+
|
| 112 |
+
exps = sorted(glob(f"inference/results/{model_name}_inference/*", recursive = True))
|
| 113 |
+
# print(exps)
|
| 114 |
+
if model_name[:4] == "yolo":
|
| 115 |
+
annot_file = glob(f"{exps[-1]}/labels/" + "*.txt")[0]
|
| 116 |
+
segments, confs = process_txtfile(annot_file)
|
| 117 |
+
else:
|
| 118 |
+
annot_file = glob(f"{exps[1]}/{image_path[:-4]}.json")[0]
|
| 119 |
+
segments, confs = process_jsonfile(annot_file)
|
| 120 |
+
# print("Result bboxes : " + annot_file)
|
| 121 |
+
|
| 122 |
+
for conf, box in zip(confs, segments):
|
| 123 |
+
conf_r = round(float(conf), 3) # round conf
|
| 124 |
+
|
| 125 |
+
if conf_r >= 0.5: # 0.5 threshold
|
| 126 |
+
bbox_c = palette[1] #
|
| 127 |
+
if conf_r <= 1.0: bbox_c = palette[-1]
|
| 128 |
+
if conf_r < 0.95: bbox_c = palette[-2]
|
| 129 |
+
if conf_r < 0.90: bbox_c = palette[-3]
|
| 130 |
+
if conf_r < 0.85: bbox_c = palette[-4]
|
| 131 |
+
if conf_r < 0.80: bbox_c = palette[-5]
|
| 132 |
+
if conf_r < 0.75: bbox_c = palette[-6]
|
| 133 |
+
if conf_r < 0.70: bbox_c = palette[-7]
|
| 134 |
+
if conf_r < 0.65: bbox_c = palette[-8]
|
| 135 |
+
if conf_r < 0.60: bbox_c = palette[-9]
|
| 136 |
+
if conf_r < 0.55: bbox_c = palette[-10]
|
| 137 |
+
|
| 138 |
+
if model_name[:4] == "yolo":
|
| 139 |
+
box = [box[0]*width, box[1]*height, box[2]*width, box[3]*height]
|
| 140 |
+
imdraw.rectangle(box, width=lw, outline=bbox_c) # box
|
| 141 |
+
|
| 142 |
+
# label
|
| 143 |
+
w, h = font.getbbox(str(conf_r))[2:4] # text w, h
|
| 144 |
+
imdraw.rectangle([box[0], box[1]-h, box[0]+w+1, box[1]+1], width=3, fill = black) # box
|
| 145 |
+
imdraw.text([box[0], box[1]-h], str(conf_r), fill=yellow, font=font)
|
| 146 |
+
|
| 147 |
+
im.save(f"{results_folder}{model_name}_inference/clean.jpg")
|
| 148 |
+
|
| 149 |
+
# count
|
| 150 |
+
count = len([i for i in confs if float(i) > 0.5])
|
| 151 |
+
|
| 152 |
+
return im, count
|
| 153 |
+
|