Spaces:
Runtime error
Runtime error
Updated interface
Browse files
app.py
CHANGED
|
@@ -109,8 +109,6 @@ def calculate_dice_coefficient(image1, image2):
|
|
| 109 |
false_negatives = np.sum(np.logical_and(np_image1_flat == 255, np_image2_flat != 255))
|
| 110 |
dice_coefficient = (2 * true_positives) / (2 * true_positives + false_positives + false_negatives)
|
| 111 |
return dice_coefficient
|
| 112 |
-
|
| 113 |
-
|
| 114 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 115 |
st.set_page_config(layout='wide')
|
| 116 |
ds = load_dataset('ahishamm/combined_masks',split='train')
|
|
@@ -132,34 +130,22 @@ img = image_select(
|
|
| 132 |
captions=["sample 1","sample 2","sample 3","sample 4"],
|
| 133 |
return_value='index'
|
| 134 |
)
|
| 135 |
-
#testing with an uploaded image
|
| 136 |
processor = AutoProcessor.from_pretrained('ahishamm/skinsam')
|
| 137 |
model = AutoModelForMaskGeneration.from_pretrained('ahishamm/skinsam_focalloss_base_combined')
|
| 138 |
model.to(device)
|
| 139 |
-
#uploaded_file = st.file_uploader("Choose a file",type=['jpg','jpeg','png'])
|
| 140 |
-
#p = get_bounding_box(np.array(ds[img]['label']))
|
| 141 |
p = get_bounding_box(np.array(label_arr[img]))
|
| 142 |
-
#predicted_mask_array = get_output(ds[img]['image'],p)
|
| 143 |
predicted_mask_array = get_output(image_arr[img],p)
|
| 144 |
-
#predicted_mask = generate_image(predicted_mask_array)
|
| 145 |
predicted_mask = generate_image(predicted_mask_array)
|
| 146 |
-
#result_image = show_mask(ds[img]['image'],predicted_mask_array)
|
| 147 |
result_image = show_mask(image_arr[img],predicted_mask_array)
|
| 148 |
with st.container():
|
| 149 |
tab1, tab2 = st.tabs(['Visualizations','Metrics'])
|
| 150 |
with tab1:
|
| 151 |
-
col1, col2
|
| 152 |
with col1:
|
| 153 |
-
#st.image(ds[img]['image'],caption='Original Skin Lesion Image',use_column_width=True)
|
| 154 |
st.image(image_arr[img],caption='Original Skin Lesion Image',use_column_width=True)
|
| 155 |
-
with col2:
|
| 156 |
-
st.image(predicted_mask,caption='Predicted Mask',use_column_width=True)
|
| 157 |
-
with col3:
|
| 158 |
st.image(result_image,caption='Mask Overlay',use_column_width=True)
|
| 159 |
with tab2:
|
| 160 |
-
#st.write(f'The IOU Score: {iou_calculation(ds[img]["label"],predicted_mask)}')
|
| 161 |
-
#st.write(f'The Pixel Accuracy: {calculate_pixel_accuracy(ds[img]["label"],predicted_mask)}')
|
| 162 |
-
#st.write(f'The Dice Coefficient Score: {calculate_dice_coefficient(ds[img]["label"],predicted_mask)}')
|
| 163 |
st.write(f'The IOU Score: {iou_calculation(label_arr[img],predicted_mask)}')
|
| 164 |
st.write(f'The Pixel Accuracy: {calculate_pixel_accuracy(label_arr[img],predicted_mask)}')
|
| 165 |
st.write(f'The Dice Coefficient Score: {calculate_dice_coefficient(label_arr[img],predicted_mask)}')
|
|
|
|
| 109 |
false_negatives = np.sum(np.logical_and(np_image1_flat == 255, np_image2_flat != 255))
|
| 110 |
dice_coefficient = (2 * true_positives) / (2 * true_positives + false_positives + false_negatives)
|
| 111 |
return dice_coefficient
|
|
|
|
|
|
|
| 112 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 113 |
st.set_page_config(layout='wide')
|
| 114 |
ds = load_dataset('ahishamm/combined_masks',split='train')
|
|
|
|
| 130 |
captions=["sample 1","sample 2","sample 3","sample 4"],
|
| 131 |
return_value='index'
|
| 132 |
)
|
|
|
|
| 133 |
processor = AutoProcessor.from_pretrained('ahishamm/skinsam')
|
| 134 |
model = AutoModelForMaskGeneration.from_pretrained('ahishamm/skinsam_focalloss_base_combined')
|
| 135 |
model.to(device)
|
|
|
|
|
|
|
| 136 |
p = get_bounding_box(np.array(label_arr[img]))
|
|
|
|
| 137 |
predicted_mask_array = get_output(image_arr[img],p)
|
|
|
|
| 138 |
predicted_mask = generate_image(predicted_mask_array)
|
|
|
|
| 139 |
result_image = show_mask(image_arr[img],predicted_mask_array)
|
| 140 |
with st.container():
|
| 141 |
tab1, tab2 = st.tabs(['Visualizations','Metrics'])
|
| 142 |
with tab1:
|
| 143 |
+
col1, col2 = st.columns(2)
|
| 144 |
with col1:
|
|
|
|
| 145 |
st.image(image_arr[img],caption='Original Skin Lesion Image',use_column_width=True)
|
| 146 |
+
with col2:
|
|
|
|
|
|
|
| 147 |
st.image(result_image,caption='Mask Overlay',use_column_width=True)
|
| 148 |
with tab2:
|
|
|
|
|
|
|
|
|
|
| 149 |
st.write(f'The IOU Score: {iou_calculation(label_arr[img],predicted_mask)}')
|
| 150 |
st.write(f'The Pixel Accuracy: {calculate_pixel_accuracy(label_arr[img],predicted_mask)}')
|
| 151 |
st.write(f'The Dice Coefficient Score: {calculate_dice_coefficient(label_arr[img],predicted_mask)}')
|