Spaces:
Running
Running
Talor Abramovich
commited on
Commit
·
05c4cde
1
Parent(s):
78a366f
ablation bench space fin
Browse files- app.py +67 -98
- requirements.txt +1 -1
- style.css +40 -0
app.py
CHANGED
|
@@ -34,14 +34,19 @@ def _sanitize_history(history):
|
|
| 34 |
if isinstance(msg, gr.ChatMessage):
|
| 35 |
role = msg.role
|
| 36 |
content = msg.content
|
|
|
|
| 37 |
elif isinstance(msg, dict):
|
| 38 |
role = msg.get("role")
|
| 39 |
content = msg.get("content", "")
|
|
|
|
| 40 |
else:
|
| 41 |
continue
|
| 42 |
if role not in {"user", "assistant", "system"}:
|
| 43 |
continue
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
| 45 |
return clean
|
| 46 |
|
| 47 |
|
|
@@ -163,27 +168,22 @@ def _archive_to_tagged_source(extracted_root: Path) -> str:
|
|
| 163 |
|
| 164 |
def _convert_pdf_to_markdown(pdf_path: Path) -> str:
|
| 165 |
try:
|
| 166 |
-
from
|
| 167 |
-
from marker.models import create_model_dict
|
| 168 |
-
from marker.output import text_from_rendered
|
| 169 |
except Exception as e:
|
| 170 |
raise gr.Error(
|
| 171 |
-
"
|
| 172 |
) from e
|
| 173 |
|
| 174 |
try:
|
| 175 |
-
converter =
|
| 176 |
-
|
| 177 |
-
text
|
| 178 |
except Exception as e:
|
| 179 |
-
raise gr.Error(f"PDF conversion failed with
|
| 180 |
|
| 181 |
text = (text or "").strip()
|
| 182 |
if not text:
|
| 183 |
-
|
| 184 |
-
text = (markdown_text or "").strip()
|
| 185 |
-
if not text:
|
| 186 |
-
raise gr.Error("Marker SDK produced empty output for this PDF.")
|
| 187 |
return text
|
| 188 |
|
| 189 |
|
|
@@ -237,17 +237,6 @@ def _build_paper_source_from_upload(uploaded_path: str) -> str:
|
|
| 237 |
"archives (.zip/.tar/.tar.gz/.tgz/.gz/.gzip), or .pdf."
|
| 238 |
)
|
| 239 |
|
| 240 |
-
|
| 241 |
-
def get_all_marker_models():
|
| 242 |
-
try:
|
| 243 |
-
from marker.models import create_model_dict
|
| 244 |
-
create_model_dict()
|
| 245 |
-
except Exception as e:
|
| 246 |
-
raise gr.Error(
|
| 247 |
-
"Marker SDK is not available. Make sure `marker-pdf` is installed."
|
| 248 |
-
) from e
|
| 249 |
-
|
| 250 |
-
|
| 251 |
def run_single_interaction(
|
| 252 |
message_input,
|
| 253 |
history,
|
|
@@ -257,7 +246,6 @@ def run_single_interaction(
|
|
| 257 |
top_p,
|
| 258 |
model_id,
|
| 259 |
provider_name,
|
| 260 |
-
interaction_locked,
|
| 261 |
hf_token: gr.OAuthToken,
|
| 262 |
):
|
| 263 |
"""
|
|
@@ -267,9 +255,6 @@ def run_single_interaction(
|
|
| 267 |
config = yaml.safe_load(Path("./prompts.yaml").read_text())
|
| 268 |
prompts = config["author_ablation"] if ablation_mode == "AuthorAblation" else config["reviewer_ablation"]
|
| 269 |
|
| 270 |
-
if interaction_locked:
|
| 271 |
-
raise gr.Error("This run is complete. Click Restart to begin a new interaction.")
|
| 272 |
-
|
| 273 |
prior_history = _sanitize_history(history)
|
| 274 |
|
| 275 |
text = ""
|
|
@@ -305,7 +290,18 @@ def run_single_interaction(
|
|
| 305 |
user_prompt_template.replace("{{paper_source}}", paper_source)
|
| 306 |
.replace("{{num_ablations}}", str(num_ablations))
|
| 307 |
)
|
| 308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
|
| 310 |
client = InferenceClient(
|
| 311 |
token=hf_token.token,
|
|
@@ -313,11 +309,23 @@ def run_single_interaction(
|
|
| 313 |
provider=provider_name,
|
| 314 |
)
|
| 315 |
|
| 316 |
-
|
| 317 |
-
messages
|
|
|
|
|
|
|
|
|
|
| 318 |
|
| 319 |
-
live_history = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
live_history.append(gr.ChatMessage(role="user", content=user_display))
|
|
|
|
|
|
|
| 321 |
live_history.append(
|
| 322 |
gr.ChatMessage(
|
| 323 |
role="assistant",
|
|
@@ -326,7 +334,6 @@ def run_single_interaction(
|
|
| 326 |
)
|
| 327 |
)
|
| 328 |
|
| 329 |
-
done_status = "Ablation plan complete. Click Restart to run another one."
|
| 330 |
emitted = False
|
| 331 |
raw_output = ""
|
| 332 |
predictions_message_idx = None
|
|
@@ -384,11 +391,7 @@ def run_single_interaction(
|
|
| 384 |
)
|
| 385 |
|
| 386 |
emitted = True
|
| 387 |
-
yield
|
| 388 |
-
live_history,
|
| 389 |
-
done_status,
|
| 390 |
-
True,
|
| 391 |
-
)
|
| 392 |
except BadRequestError as e:
|
| 393 |
message = str(e)
|
| 394 |
if "model_not_supported" in message:
|
|
@@ -411,11 +414,7 @@ def run_single_interaction(
|
|
| 411 |
content="_No valid predictions JSONL found._",
|
| 412 |
)
|
| 413 |
)
|
| 414 |
-
yield
|
| 415 |
-
live_history,
|
| 416 |
-
done_status,
|
| 417 |
-
True,
|
| 418 |
-
)
|
| 419 |
|
| 420 |
def print_like_dislike(x: gr.LikeData):
|
| 421 |
print(x.index, x.value, x.liked)
|
|
@@ -434,42 +433,26 @@ def change_ablation_mode(
|
|
| 434 |
)
|
| 435 |
|
| 436 |
|
| 437 |
-
def
|
| 438 |
-
return
|
| 439 |
-
[],
|
| 440 |
-
"Ready. Submit your paper.",
|
| 441 |
-
False,
|
| 442 |
-
)
|
| 443 |
|
| 444 |
|
| 445 |
-
with gr.Blocks(
|
| 446 |
-
css="""
|
| 447 |
-
#ablation-mode label:has(input[value="AuthorAblation"]) {
|
| 448 |
-
color: #7a09b8 !important;
|
| 449 |
-
font-weight: 700;
|
| 450 |
-
}
|
| 451 |
-
#ablation-mode label:has(input[value="ReviewerAblation"]) {
|
| 452 |
-
color: #63c009 !important;
|
| 453 |
-
font-weight: 700;
|
| 454 |
-
}
|
| 455 |
-
#ablation-mode input[value="AuthorAblation"] + span,
|
| 456 |
-
#ablation-mode input[value="AuthorAblation"] ~ span {
|
| 457 |
-
color: #7a09b8 !important;
|
| 458 |
-
font-weight: 700;
|
| 459 |
-
}
|
| 460 |
-
#ablation-mode input[value="ReviewerAblation"] + span,
|
| 461 |
-
#ablation-mode input[value="ReviewerAblation"] ~ span {
|
| 462 |
-
color: #63c009 !important;
|
| 463 |
-
font-weight: 700;
|
| 464 |
-
}
|
| 465 |
-
"""
|
| 466 |
-
) as demo:
|
| 467 |
-
demo.load(get_all_marker_models)
|
| 468 |
gr.Markdown(
|
| 469 |
"""
|
| 470 |
-
#
|
| 471 |
-
|
| 472 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 473 |
"""
|
| 474 |
)
|
| 475 |
|
|
@@ -481,17 +464,15 @@ with gr.Blocks(
|
|
| 481 |
elem_id="ablation-mode",
|
| 482 |
)
|
| 483 |
|
| 484 |
-
status_text = gr.Markdown("Ready. Submit text or a single file.")
|
| 485 |
-
restart_btn = gr.Button("↺")
|
| 486 |
chatbot = gr.Chatbot(
|
| 487 |
label="Ablation Plan",
|
| 488 |
-
buttons=[
|
|
|
|
| 489 |
)
|
| 490 |
-
interaction_locked = gr.State(False)
|
| 491 |
|
| 492 |
message_input = gr.MultimodalTextbox(
|
| 493 |
label="Paper content",
|
| 494 |
-
placeholder="
|
| 495 |
lines=5,
|
| 496 |
file_count="single",
|
| 497 |
file_types=[
|
|
@@ -525,12 +506,13 @@ with gr.Blocks(
|
|
| 525 |
model_id = gr.Dropdown(
|
| 526 |
choices=[
|
| 527 |
"openai/gpt-oss-120b",
|
| 528 |
-
"
|
|
|
|
| 529 |
"moonshotai/Kimi-K2.5",
|
| 530 |
"moonshotai/Kimi-K2-Thinking",
|
| 531 |
"moonshotai/Kimi-K2-Instruct",
|
| 532 |
"deepseek-ai/DeepSeek-V3.2",
|
| 533 |
-
"
|
| 534 |
"Qwen/Qwen3-235B-A22B-Instruct-2507",
|
| 535 |
],
|
| 536 |
value="openai/gpt-oss-120b",
|
|
@@ -581,6 +563,7 @@ with gr.Blocks(
|
|
| 581 |
)
|
| 582 |
|
| 583 |
with gr.Sidebar():
|
|
|
|
| 584 |
gr.LoginButton()
|
| 585 |
|
| 586 |
message_input.submit(
|
|
@@ -594,30 +577,16 @@ with gr.Blocks(
|
|
| 594 |
top_p,
|
| 595 |
model_id,
|
| 596 |
provider_name,
|
| 597 |
-
interaction_locked,
|
| 598 |
],
|
| 599 |
outputs=[
|
| 600 |
chatbot,
|
| 601 |
-
status_text,
|
| 602 |
-
interaction_locked,
|
| 603 |
-
],
|
| 604 |
-
)
|
| 605 |
-
|
| 606 |
-
restart_btn.click(
|
| 607 |
-
restart_interaction,
|
| 608 |
-
outputs=[
|
| 609 |
-
chatbot,
|
| 610 |
-
status_text,
|
| 611 |
-
interaction_locked,
|
| 612 |
],
|
| 613 |
)
|
| 614 |
|
| 615 |
chatbot.clear(
|
| 616 |
-
|
| 617 |
outputs=[
|
| 618 |
chatbot,
|
| 619 |
-
status_text,
|
| 620 |
-
interaction_locked,
|
| 621 |
]
|
| 622 |
)
|
| 623 |
|
|
@@ -633,4 +602,4 @@ with gr.Blocks(
|
|
| 633 |
chatbot.like(print_like_dislike)
|
| 634 |
|
| 635 |
if __name__ == "__main__":
|
| 636 |
-
demo.launch()
|
|
|
|
| 34 |
if isinstance(msg, gr.ChatMessage):
|
| 35 |
role = msg.role
|
| 36 |
content = msg.content
|
| 37 |
+
metadata = msg.metadata
|
| 38 |
elif isinstance(msg, dict):
|
| 39 |
role = msg.get("role")
|
| 40 |
content = msg.get("content", "")
|
| 41 |
+
metadata = msg.get("metadata")
|
| 42 |
else:
|
| 43 |
continue
|
| 44 |
if role not in {"user", "assistant", "system"}:
|
| 45 |
continue
|
| 46 |
+
message = {"role": role, "content": _normalize_message_content(content)}
|
| 47 |
+
if metadata:
|
| 48 |
+
message["metadata"] = metadata
|
| 49 |
+
clean.append(message)
|
| 50 |
return clean
|
| 51 |
|
| 52 |
|
|
|
|
| 168 |
|
| 169 |
def _convert_pdf_to_markdown(pdf_path: Path) -> str:
|
| 170 |
try:
|
| 171 |
+
from markitdown import MarkItDown
|
|
|
|
|
|
|
| 172 |
except Exception as e:
|
| 173 |
raise gr.Error(
|
| 174 |
+
"MarkItDown SDK is not available. Make sure `markitdown[pdf]` is installed."
|
| 175 |
) from e
|
| 176 |
|
| 177 |
try:
|
| 178 |
+
converter = MarkItDown(enable_plugins=False)
|
| 179 |
+
result = converter.convert(str(pdf_path))
|
| 180 |
+
text = result.text_content
|
| 181 |
except Exception as e:
|
| 182 |
+
raise gr.Error(f"PDF conversion failed with MarkItDown SDK: {e}") from e
|
| 183 |
|
| 184 |
text = (text or "").strip()
|
| 185 |
if not text:
|
| 186 |
+
raise gr.Error("MarkItDown SDK produced empty output for this PDF.")
|
|
|
|
|
|
|
|
|
|
| 187 |
return text
|
| 188 |
|
| 189 |
|
|
|
|
| 237 |
"archives (.zip/.tar/.tar.gz/.tgz/.gz/.gzip), or .pdf."
|
| 238 |
)
|
| 239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
def run_single_interaction(
|
| 241 |
message_input,
|
| 242 |
history,
|
|
|
|
| 246 |
top_p,
|
| 247 |
model_id,
|
| 248 |
provider_name,
|
|
|
|
| 249 |
hf_token: gr.OAuthToken,
|
| 250 |
):
|
| 251 |
"""
|
|
|
|
| 255 |
config = yaml.safe_load(Path("./prompts.yaml").read_text())
|
| 256 |
prompts = config["author_ablation"] if ablation_mode == "AuthorAblation" else config["reviewer_ablation"]
|
| 257 |
|
|
|
|
|
|
|
|
|
|
| 258 |
prior_history = _sanitize_history(history)
|
| 259 |
|
| 260 |
text = ""
|
|
|
|
| 290 |
user_prompt_template.replace("{{paper_source}}", paper_source)
|
| 291 |
.replace("{{num_ablations}}", str(num_ablations))
|
| 292 |
)
|
| 293 |
+
if has_file:
|
| 294 |
+
source_hint = f"file: {file_label}"
|
| 295 |
+
else:
|
| 296 |
+
first_line = (text.splitlines()[0] if text else "").strip()
|
| 297 |
+
first_line_words = first_line.split()[:100]
|
| 298 |
+
preview = " ".join(first_line_words)
|
| 299 |
+
source_hint = f"text preview: {preview}" if preview else "text preview: (empty)"
|
| 300 |
+
|
| 301 |
+
if ablation_mode == "AuthorAblation":
|
| 302 |
+
user_display = f"Planning {num_ablations} ablations for submitted paper ({source_hint})."
|
| 303 |
+
else:
|
| 304 |
+
user_display = f"Reviewing and suggesting {num_ablations} missing ablations for submitted paper ({source_hint})."
|
| 305 |
|
| 306 |
client = InferenceClient(
|
| 307 |
token=hf_token.token,
|
|
|
|
| 309 |
provider=provider_name,
|
| 310 |
)
|
| 311 |
|
| 312 |
+
# Keep full chat visible to users, but send only current input to model.
|
| 313 |
+
messages = [
|
| 314 |
+
{"role": "system", "content": prompts["system_prompt"]},
|
| 315 |
+
{"role": "user", "content": user_content},
|
| 316 |
+
]
|
| 317 |
|
| 318 |
+
live_history = [
|
| 319 |
+
gr.ChatMessage(
|
| 320 |
+
role=item["role"],
|
| 321 |
+
content=item["content"],
|
| 322 |
+
metadata=item.get("metadata") or {},
|
| 323 |
+
)
|
| 324 |
+
for item in prior_history
|
| 325 |
+
]
|
| 326 |
live_history.append(gr.ChatMessage(role="user", content=user_display))
|
| 327 |
+
if has_file and ablation_mode == "AuthorAblation" and "ablat" in paper_source.lower():
|
| 328 |
+
gr.Warning("Uploaded paper appears to already contain ablation content (`ablat*`).")
|
| 329 |
live_history.append(
|
| 330 |
gr.ChatMessage(
|
| 331 |
role="assistant",
|
|
|
|
| 334 |
)
|
| 335 |
)
|
| 336 |
|
|
|
|
| 337 |
emitted = False
|
| 338 |
raw_output = ""
|
| 339 |
predictions_message_idx = None
|
|
|
|
| 391 |
)
|
| 392 |
|
| 393 |
emitted = True
|
| 394 |
+
yield live_history
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
except BadRequestError as e:
|
| 396 |
message = str(e)
|
| 397 |
if "model_not_supported" in message:
|
|
|
|
| 414 |
content="_No valid predictions JSONL found._",
|
| 415 |
)
|
| 416 |
)
|
| 417 |
+
yield live_history
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
|
| 419 |
def print_like_dislike(x: gr.LikeData):
|
| 420 |
print(x.index, x.value, x.liked)
|
|
|
|
| 433 |
)
|
| 434 |
|
| 435 |
|
| 436 |
+
def clear_chat():
|
| 437 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
| 438 |
|
| 439 |
|
| 440 |
+
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 441 |
gr.Markdown(
|
| 442 |
"""
|
| 443 |
+
# <span class="ablationbench">AblationBench:</span> Evaluating Automated Planning of Ablations in Empirical AI Research
|
| 444 |
+
|
| 445 |
+
Can models help automate the design of ablation experiments in scientific papers? To explore this, we introduce <span class="ablationbench">AblationBench</span>, a benchmark for evaluating models on ablation planning in empirical AI research. It includes two tasks: <span class="authorablation">AuthorAblation</span>, where the model helps authors to propose ablations from a written method section, and <span class="reviewerablation">ReviewerAblation</span>, where it help reviewers finding and suggesting missing ablations in a full paper.
|
| 446 |
+
|
| 447 |
+
This demo shows you how models can plan ablations for your papers using our baseline LM-Planner.
|
| 448 |
+
|
| 449 |
+
You can choose between the two tasks, and upload your paper as a text or as a file, to plan ablations or find missing ablations in your paper.
|
| 450 |
+
|
| 451 |
+
For best results, follow these guidelines:
|
| 452 |
+
1. In <span class="authorablation">AuthorAblation</span>, the uploaded paper should include the method section, and should not contain any ablation experiments.
|
| 453 |
+
2. For both tasks, it is better to use text files than PDFs, or upload the zip file of your project, downloaded from overleaf.
|
| 454 |
+
|
| 455 |
+
Want to read more? You are welcome to visit our [🌍 project page](https://ablation-bench.github.io/#/), evaluate on our [🤗 benchmark](https://huggingface.co/collections/ai-coscientist/ablationbench) and read our [📎 paper](https://www.arxiv.org/abs/2507.08038).
|
| 456 |
"""
|
| 457 |
)
|
| 458 |
|
|
|
|
| 464 |
elem_id="ablation-mode",
|
| 465 |
)
|
| 466 |
|
|
|
|
|
|
|
| 467 |
chatbot = gr.Chatbot(
|
| 468 |
label="Ablation Plan",
|
| 469 |
+
buttons=["copy"],
|
| 470 |
+
avatar_images=("https://ablation-bench.github.io/_media/user_avatar.png", "https://ablation-bench.github.io/_media/lm_avatar.png"),
|
| 471 |
)
|
|
|
|
| 472 |
|
| 473 |
message_input = gr.MultimodalTextbox(
|
| 474 |
label="Paper content",
|
| 475 |
+
placeholder="Enter your paper text here, or upload one file: TEX, MD, PDF, ZIP, or GZIP.",
|
| 476 |
lines=5,
|
| 477 |
file_count="single",
|
| 478 |
file_types=[
|
|
|
|
| 506 |
model_id = gr.Dropdown(
|
| 507 |
choices=[
|
| 508 |
"openai/gpt-oss-120b",
|
| 509 |
+
"MiniMaxAI/MiniMax-M2.5",
|
| 510 |
+
"Qwen/Qwen3.5-397B-A17B",
|
| 511 |
"moonshotai/Kimi-K2.5",
|
| 512 |
"moonshotai/Kimi-K2-Thinking",
|
| 513 |
"moonshotai/Kimi-K2-Instruct",
|
| 514 |
"deepseek-ai/DeepSeek-V3.2",
|
| 515 |
+
"zai-org/GLM-5",
|
| 516 |
"Qwen/Qwen3-235B-A22B-Instruct-2507",
|
| 517 |
],
|
| 518 |
value="openai/gpt-oss-120b",
|
|
|
|
| 563 |
)
|
| 564 |
|
| 565 |
with gr.Sidebar():
|
| 566 |
+
gr.Markdown("""<center><img src="https://ablation-bench.github.io/_media/icon.png"></center>""")
|
| 567 |
gr.LoginButton()
|
| 568 |
|
| 569 |
message_input.submit(
|
|
|
|
| 577 |
top_p,
|
| 578 |
model_id,
|
| 579 |
provider_name,
|
|
|
|
| 580 |
],
|
| 581 |
outputs=[
|
| 582 |
chatbot,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 583 |
],
|
| 584 |
)
|
| 585 |
|
| 586 |
chatbot.clear(
|
| 587 |
+
clear_chat,
|
| 588 |
outputs=[
|
| 589 |
chatbot,
|
|
|
|
|
|
|
| 590 |
]
|
| 591 |
)
|
| 592 |
|
|
|
|
| 602 |
chatbot.like(print_like_dislike)
|
| 603 |
|
| 604 |
if __name__ == "__main__":
|
| 605 |
+
demo.launch(css_paths=Path("style.css"))
|
requirements.txt
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
pytz
|
| 2 |
-
|
|
|
|
| 1 |
pytz
|
| 2 |
+
markitdown[pdf]
|
style.css
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#ablation-mode label:has(input[value="AuthorAblation"]) {
|
| 2 |
+
color: #7a09b8 !important;
|
| 3 |
+
font-weight: 700;
|
| 4 |
+
}
|
| 5 |
+
#ablation-mode label:has(input[value="ReviewerAblation"]) {
|
| 6 |
+
color: #63c009 !important;
|
| 7 |
+
font-weight: 700;
|
| 8 |
+
}
|
| 9 |
+
#ablation-mode input[value="AuthorAblation"] + span,
|
| 10 |
+
#ablation-mode input[value="AuthorAblation"] ~ span {
|
| 11 |
+
color: #7a09b8 !important;
|
| 12 |
+
font-weight: 700;
|
| 13 |
+
}
|
| 14 |
+
#ablation-mode input[value="ReviewerAblation"] + span,
|
| 15 |
+
#ablation-mode input[value="ReviewerAblation"] ~ span {
|
| 16 |
+
color: #63c009 !important;
|
| 17 |
+
font-weight: 700;
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
.ablationbench {
|
| 21 |
+
background: linear-gradient(to right, #0C69DA,rgb(129, 176, 233));
|
| 22 |
+
-webkit-text-fill-color: transparent;
|
| 23 |
+
-webkit-background-clip: text;
|
| 24 |
+
font-weight: bold;
|
| 25 |
+
font-style: italic;
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
.authorablation {
|
| 29 |
+
background: linear-gradient(to right, rgb(196, 124, 235),rgb(196, 124, 235));
|
| 30 |
+
-webkit-text-fill-color: transparent;
|
| 31 |
+
-webkit-background-clip: text;
|
| 32 |
+
font-style: italic;
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
.reviewerablation {
|
| 36 |
+
background: linear-gradient(to right, #60BF00, #60BF00);
|
| 37 |
+
-webkit-text-fill-color: transparent;
|
| 38 |
+
-webkit-background-clip: text;
|
| 39 |
+
font-style: italic;
|
| 40 |
+
}
|