Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -28,72 +28,29 @@ SARVAM_LANGUAGES = INDIC_LANGUAGES
|
|
| 28 |
TORCH_DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 29 |
DEVICE_MAP = "auto" if torch.cuda.is_available() else None
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
)
|
| 54 |
-
# Enable optimizations
|
| 55 |
-
if hasattr(self.indictrans_model, 'eval'):
|
| 56 |
-
self.indictrans_model.eval()
|
| 57 |
-
if torch.cuda.is_available():
|
| 58 |
-
torch.cuda.empty_cache()
|
| 59 |
-
except Exception as e:
|
| 60 |
-
print(f"Error loading IndicTrans model: {e}")
|
| 61 |
-
|
| 62 |
-
def load_sarvam_model(self):
|
| 63 |
-
if self.sarvam_model is None:
|
| 64 |
-
try:
|
| 65 |
-
self.sarvam_model = AutoModelForCausalLM.from_pretrained(
|
| 66 |
-
"sarvamai/sarvam-translate",
|
| 67 |
-
torch_dtype=TORCH_DTYPE,
|
| 68 |
-
device_map=DEVICE_MAP,
|
| 69 |
-
token=HF_TOKEN,
|
| 70 |
-
low_cpu_mem_usage=True,
|
| 71 |
-
trust_remote_code=True
|
| 72 |
-
)
|
| 73 |
-
self.sarvam_tokenizer = AutoTokenizer.from_pretrained(
|
| 74 |
-
"sarvamai/sarvam-translate",
|
| 75 |
-
trust_remote_code=True
|
| 76 |
-
)
|
| 77 |
-
# Enable optimizations
|
| 78 |
-
if hasattr(self.sarvam_model, 'eval'):
|
| 79 |
-
self.sarvam_model.eval()
|
| 80 |
-
if torch.cuda.is_available():
|
| 81 |
-
torch.cuda.empty_cache()
|
| 82 |
-
except Exception as e:
|
| 83 |
-
print(f"Error loading Sarvam model: {e}")
|
| 84 |
-
|
| 85 |
-
def get_model_and_tokenizer(self, model_type):
|
| 86 |
-
if model_type == "indictrans":
|
| 87 |
-
if self.indictrans_model is None:
|
| 88 |
-
self.load_indictrans_model()
|
| 89 |
-
return self.indictrans_model, self.indictrans_tokenizer
|
| 90 |
-
else: # sarvam
|
| 91 |
-
if self.sarvam_model is None:
|
| 92 |
-
self.load_sarvam_model()
|
| 93 |
-
return self.sarvam_model, self.sarvam_tokenizer
|
| 94 |
|
| 95 |
-
# Global model manager
|
| 96 |
-
model_manager = ModelManager()
|
| 97 |
|
| 98 |
def format_message_for_translation(message, target_lang):
|
| 99 |
return f"Translate the following text to {target_lang}: {message}"
|
|
@@ -175,7 +132,10 @@ def translate_message(
|
|
| 175 |
model_type: str = "indictrans"
|
| 176 |
) -> Iterator[str]:
|
| 177 |
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
if model is None or tokenizer is None:
|
| 181 |
yield "Error: Model failed to load. Please try again."
|
|
|
|
| 28 |
TORCH_DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 29 |
DEVICE_MAP = "auto" if torch.cuda.is_available() else None
|
| 30 |
|
| 31 |
+
indictrans_model = AutoModelForCausalLM.from_pretrained(
|
| 32 |
+
"ai4bharat/IndicTrans3-beta",
|
| 33 |
+
torch_dtype=TORCH_DTYPE,
|
| 34 |
+
device_map=DEVICE_MAP,
|
| 35 |
+
token=HF_TOKEN,
|
| 36 |
+
low_cpu_mem_usage=True,
|
| 37 |
+
trust_remote_code=True
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
sarvam_model = AutoModelForCausalLM.from_pretrained(
|
| 41 |
+
"sarvamai/sarvam-translate",
|
| 42 |
+
torch_dtype=TORCH_DTYPE,
|
| 43 |
+
device_map=DEVICE_MAP,
|
| 44 |
+
token=HF_TOKEN,
|
| 45 |
+
low_cpu_mem_usage=True,
|
| 46 |
+
trust_remote_code=True
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 50 |
+
"ai4bharat/IndicTrans3-beta",
|
| 51 |
+
trust_remote_code=True
|
| 52 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
|
|
|
|
|
|
| 54 |
|
| 55 |
def format_message_for_translation(message, target_lang):
|
| 56 |
return f"Translate the following text to {target_lang}: {message}"
|
|
|
|
| 132 |
model_type: str = "indictrans"
|
| 133 |
) -> Iterator[str]:
|
| 134 |
|
| 135 |
+
if model_type == "indictrans":
|
| 136 |
+
model = indictrans_model
|
| 137 |
+
elif model_type == "sarvam":
|
| 138 |
+
model = sarvam_model
|
| 139 |
|
| 140 |
if model is None or tokenizer is None:
|
| 141 |
yield "Error: Model failed to load. Please try again."
|