Spaces:
Runtime error
Runtime error
predicting-effective-arguments-in-essay
/
source
/services
/predicting_effective_arguments
/train
/02_classification copy.py
| import pandas as pd | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from datasets import load_dataset | |
| from transformers import AutoTokenizer | |
| TARGET = 'discourse_effectiveness' | |
| TEXT = "discourse_text" | |
| train_df = pd.read_csv("data/raw_data/train.csv") | |
| test_df = pd.read_csv("data/raw_data/test.csv") | |
| """ | |
| train_df[TARGET].value_counts(ascending=True).plot.barh() | |
| plt.title("Frequency of Classes") | |
| plt.show() | |
| train_df['discourse_type'].value_counts(ascending=True).plot.barh() | |
| plt.title("Frequency of discourse_type") | |
| plt.show() | |
| train_df["Words Per text"] = train_df[TEXT].str.split().apply(len) | |
| train_df.boxplot("Words Per text", by=TARGET, grid=False, showfliers=False, | |
| color="black") | |
| plt.suptitle("") | |
| plt.xlabel("") | |
| plt.show() | |
| """ | |
| model_ckpt = "distilbert-base-uncased" | |
| tokenizer = AutoTokenizer.from_pretrained(model_ckpt) | |
| tokenizer.model_max_length | |
| pass |