Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,8 +6,8 @@ import insightface
|
|
| 6 |
import gradio as gr
|
| 7 |
import numpy as np
|
| 8 |
import os
|
| 9 |
-
from huggingface_hub import snapshot_download
|
| 10 |
-
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
|
| 11 |
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline
|
| 12 |
from kolors.models.modeling_chatglm import ChatGLMModel
|
| 13 |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
|
@@ -18,48 +18,132 @@ from PIL import Image
|
|
| 18 |
from insightface.app import FaceAnalysis
|
| 19 |
from insightface.data import get_image as ins_get_image
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
|
|
|
| 35 |
pipe = StableDiffusionXLPipeline(
|
| 36 |
-
vae
|
| 37 |
-
text_encoder
|
| 38 |
-
tokenizer
|
| 39 |
-
unet
|
| 40 |
-
scheduler
|
| 41 |
-
face_clip_encoder
|
| 42 |
-
face_clip_processor
|
| 43 |
-
force_zeros_for_empty_prompt
|
| 44 |
)
|
| 45 |
|
| 46 |
class FaceInfoGenerator():
|
| 47 |
-
def __init__(self, root_dir
|
| 48 |
-
|
| 49 |
-
self.app
|
|
|
|
| 50 |
|
| 51 |
def get_faceinfo_one_img(self, face_image):
|
|
|
|
|
|
|
|
|
|
| 52 |
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
| 53 |
|
| 54 |
if len(face_info) == 0:
|
| 55 |
-
|
| 56 |
else:
|
| 57 |
-
|
|
|
|
| 58 |
return face_info
|
| 59 |
|
| 60 |
def face_bbox_to_square(bbox):
|
| 61 |
## l, t, r, b to square l, t, r, b
|
| 62 |
-
l,t,r,b = bbox
|
| 63 |
cent_x = (l + r) / 2
|
| 64 |
cent_y = (t + b) / 2
|
| 65 |
w, h = r - l, b - t
|
|
@@ -78,63 +162,86 @@ face_info_generator = FaceInfoGenerator()
|
|
| 78 |
|
| 79 |
@spaces.GPU
|
| 80 |
def infer(prompt,
|
| 81 |
-
image
|
| 82 |
-
negative_prompt
|
| 83 |
-
seed
|
| 84 |
-
randomize_seed
|
| 85 |
-
guidance_scale
|
| 86 |
-
num_inference_steps
|
| 87 |
):
|
|
|
|
|
|
|
|
|
|
| 88 |
if randomize_seed:
|
| 89 |
seed = random.randint(0, MAX_SEED)
|
| 90 |
-
|
|
|
|
|
|
|
| 91 |
global pipe
|
| 92 |
pipe = pipe.to(device)
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
|
|
|
| 97 |
face_info = face_info_generator.get_faceinfo_one_img(image)
|
|
|
|
|
|
|
|
|
|
| 98 |
face_bbox_square = face_bbox_to_square(face_info["bbox"])
|
| 99 |
crop_image = image.crop(face_bbox_square)
|
| 100 |
crop_image = crop_image.resize((336, 336))
|
| 101 |
crop_image = [crop_image]
|
|
|
|
| 102 |
face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
|
| 103 |
-
face_embeds = face_embeds.to(device, dtype
|
| 104 |
-
|
| 105 |
-
image = pipe(
|
| 106 |
-
prompt = prompt,
|
| 107 |
-
negative_prompt = negative_prompt,
|
| 108 |
-
height = 1024,
|
| 109 |
-
width = 1024,
|
| 110 |
-
num_inference_steps= num_inference_steps,
|
| 111 |
-
guidance_scale = guidance_scale,
|
| 112 |
-
num_images_per_prompt = 1,
|
| 113 |
-
generator = generator,
|
| 114 |
-
face_crop_image = crop_image,
|
| 115 |
-
face_insightface_embeds = face_embeds
|
| 116 |
-
).images[0]
|
| 117 |
-
|
| 118 |
-
return image, seed
|
| 119 |
-
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
|
|
|
| 122 |
|
| 123 |
css = """
|
| 124 |
footer {
|
| 125 |
visibility: hidden;
|
| 126 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
"""
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
def load_description(fp):
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
| 135 |
|
|
|
|
| 136 |
with gr.Blocks(theme="soft", css=css) as Kolors:
|
| 137 |
-
|
| 138 |
gr.HTML(
|
| 139 |
"""
|
| 140 |
<div class='container' style='display:flex; justify-content:center; gap:12px;'>
|
|
@@ -146,7 +253,9 @@ with gr.Blocks(theme="soft", css=css) as Kolors:
|
|
| 146 |
<img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord badge">
|
| 147 |
</a>
|
| 148 |
</div>
|
| 149 |
-
|
|
|
|
|
|
|
| 150 |
)
|
| 151 |
|
| 152 |
with gr.Row():
|
|
@@ -154,15 +263,21 @@ with gr.Blocks(theme="soft", css=css) as Kolors:
|
|
| 154 |
with gr.Row():
|
| 155 |
prompt = gr.Textbox(
|
| 156 |
label="Prompt",
|
| 157 |
-
placeholder="
|
| 158 |
-
lines=
|
|
|
|
| 159 |
)
|
| 160 |
with gr.Row():
|
| 161 |
-
image = gr.Image(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
with gr.Accordion("Advanced Settings", open=False):
|
| 163 |
negative_prompt = gr.Textbox(
|
| 164 |
label="Negative prompt",
|
| 165 |
-
placeholder="
|
|
|
|
| 166 |
visible=True,
|
| 167 |
)
|
| 168 |
seed = gr.Slider(
|
|
@@ -170,7 +285,7 @@ with gr.Blocks(theme="soft", css=css) as Kolors:
|
|
| 170 |
minimum=0,
|
| 171 |
maximum=MAX_SEED,
|
| 172 |
step=1,
|
| 173 |
-
value=
|
| 174 |
)
|
| 175 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 176 |
with gr.Row():
|
|
@@ -189,19 +304,27 @@ with gr.Blocks(theme="soft", css=css) as Kolors:
|
|
| 189 |
value=25,
|
| 190 |
)
|
| 191 |
with gr.Row():
|
| 192 |
-
button = gr.Button("
|
| 193 |
|
| 194 |
with gr.Column(elem_id="col-right"):
|
| 195 |
-
result = gr.Image(label="
|
| 196 |
-
seed_used = gr.Number(label="Seed Used")
|
| 197 |
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
button.click(
|
| 201 |
-
fn
|
| 202 |
-
inputs
|
| 203 |
-
outputs
|
| 204 |
)
|
| 205 |
|
| 206 |
-
|
| 207 |
-
Kolors.queue().launch(debug=True)
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
import numpy as np
|
| 8 |
import os
|
| 9 |
+
from huggingface_hub import snapshot_download, login
|
| 10 |
+
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
|
| 11 |
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline
|
| 12 |
from kolors.models.modeling_chatglm import ChatGLMModel
|
| 13 |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
|
|
|
| 18 |
from insightface.app import FaceAnalysis
|
| 19 |
from insightface.data import get_image as ins_get_image
|
| 20 |
|
| 21 |
+
# Hugging Face 토큰으로 로그인
|
| 22 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 23 |
+
if HF_TOKEN:
|
| 24 |
+
login(token=HF_TOKEN)
|
| 25 |
+
print("Successfully logged in to Hugging Face Hub")
|
| 26 |
+
else:
|
| 27 |
+
print("Warning: HF_TOKEN not found. Using public access only.")
|
| 28 |
|
| 29 |
+
# GPU 사용 가능 여부 확인
|
| 30 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
+
dtype = torch.float16 if device == "cuda" else torch.float32
|
| 32 |
|
| 33 |
+
# 모델 다운로드 (토큰 사용)
|
| 34 |
+
try:
|
| 35 |
+
ckpt_dir = snapshot_download(
|
| 36 |
+
repo_id="Kwai-Kolors/Kolors",
|
| 37 |
+
token=HF_TOKEN,
|
| 38 |
+
local_dir_use_symlinks=False
|
| 39 |
+
)
|
| 40 |
+
ckpt_dir_faceid = snapshot_download(
|
| 41 |
+
repo_id="Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus",
|
| 42 |
+
token=HF_TOKEN,
|
| 43 |
+
local_dir_use_symlinks=False
|
| 44 |
+
)
|
| 45 |
+
except Exception as e:
|
| 46 |
+
print(f"Error downloading models: {e}")
|
| 47 |
+
raise
|
| 48 |
+
|
| 49 |
+
# 모델 로딩 with error handling
|
| 50 |
+
try:
|
| 51 |
+
text_encoder = ChatGLMModel.from_pretrained(
|
| 52 |
+
f'{ckpt_dir}/text_encoder',
|
| 53 |
+
torch_dtype=dtype,
|
| 54 |
+
token=HF_TOKEN,
|
| 55 |
+
trust_remote_code=True
|
| 56 |
+
)
|
| 57 |
+
if device == "cuda":
|
| 58 |
+
text_encoder = text_encoder.half().to(device)
|
| 59 |
+
|
| 60 |
+
tokenizer = ChatGLMTokenizer.from_pretrained(
|
| 61 |
+
f'{ckpt_dir}/text_encoder',
|
| 62 |
+
token=HF_TOKEN,
|
| 63 |
+
trust_remote_code=True
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
vae = AutoencoderKL.from_pretrained(
|
| 67 |
+
f"{ckpt_dir}/vae",
|
| 68 |
+
revision=None,
|
| 69 |
+
torch_dtype=dtype,
|
| 70 |
+
token=HF_TOKEN
|
| 71 |
+
)
|
| 72 |
+
if device == "cuda":
|
| 73 |
+
vae = vae.half().to(device)
|
| 74 |
+
|
| 75 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(
|
| 76 |
+
f"{ckpt_dir}/scheduler",
|
| 77 |
+
token=HF_TOKEN
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
unet = UNet2DConditionModel.from_pretrained(
|
| 81 |
+
f"{ckpt_dir}/unet",
|
| 82 |
+
revision=None,
|
| 83 |
+
torch_dtype=dtype,
|
| 84 |
+
token=HF_TOKEN
|
| 85 |
+
)
|
| 86 |
+
if device == "cuda":
|
| 87 |
+
unet = unet.half().to(device)
|
| 88 |
+
|
| 89 |
+
# CLIP 모델 로딩 with fallback
|
| 90 |
+
try:
|
| 91 |
+
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
| 92 |
+
f'{ckpt_dir_faceid}/clip-vit-large-patch14-336',
|
| 93 |
+
torch_dtype=dtype,
|
| 94 |
+
ignore_mismatched_sizes=True,
|
| 95 |
+
token=HF_TOKEN
|
| 96 |
+
)
|
| 97 |
+
except Exception as e:
|
| 98 |
+
print(f"Loading CLIP from local failed: {e}, trying alternative source...")
|
| 99 |
+
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
| 100 |
+
'openai/clip-vit-large-patch14-336',
|
| 101 |
+
torch_dtype=dtype,
|
| 102 |
+
ignore_mismatched_sizes=True,
|
| 103 |
+
token=HF_TOKEN
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
clip_image_encoder.to(device)
|
| 107 |
+
clip_image_processor = CLIPImageProcessor(size=336, crop_size=336)
|
| 108 |
+
|
| 109 |
+
except Exception as e:
|
| 110 |
+
print(f"Error loading models: {e}")
|
| 111 |
+
raise
|
| 112 |
|
| 113 |
+
# Pipeline 생성
|
| 114 |
pipe = StableDiffusionXLPipeline(
|
| 115 |
+
vae=vae,
|
| 116 |
+
text_encoder=text_encoder,
|
| 117 |
+
tokenizer=tokenizer,
|
| 118 |
+
unet=unet,
|
| 119 |
+
scheduler=scheduler,
|
| 120 |
+
face_clip_encoder=clip_image_encoder,
|
| 121 |
+
face_clip_processor=clip_image_processor,
|
| 122 |
+
force_zeros_for_empty_prompt=False,
|
| 123 |
)
|
| 124 |
|
| 125 |
class FaceInfoGenerator():
|
| 126 |
+
def __init__(self, root_dir="./.insightface/"):
|
| 127 |
+
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if device == "cuda" else ['CPUExecutionProvider']
|
| 128 |
+
self.app = FaceAnalysis(name='antelopev2', root=root_dir, providers=providers)
|
| 129 |
+
self.app.prepare(ctx_id=0, det_size=(640, 640))
|
| 130 |
|
| 131 |
def get_faceinfo_one_img(self, face_image):
|
| 132 |
+
if face_image is None:
|
| 133 |
+
return None
|
| 134 |
+
|
| 135 |
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
| 136 |
|
| 137 |
if len(face_info) == 0:
|
| 138 |
+
return None
|
| 139 |
else:
|
| 140 |
+
# only use the maximum face
|
| 141 |
+
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1]
|
| 142 |
return face_info
|
| 143 |
|
| 144 |
def face_bbox_to_square(bbox):
|
| 145 |
## l, t, r, b to square l, t, r, b
|
| 146 |
+
l, t, r, b = bbox
|
| 147 |
cent_x = (l + r) / 2
|
| 148 |
cent_y = (t + b) / 2
|
| 149 |
w, h = r - l, b - t
|
|
|
|
| 162 |
|
| 163 |
@spaces.GPU
|
| 164 |
def infer(prompt,
|
| 165 |
+
image=None,
|
| 166 |
+
negative_prompt="low quality, blurry, distorted",
|
| 167 |
+
seed=66,
|
| 168 |
+
randomize_seed=False,
|
| 169 |
+
guidance_scale=5.0,
|
| 170 |
+
num_inference_steps=50
|
| 171 |
):
|
| 172 |
+
if image is None:
|
| 173 |
+
return None, 0
|
| 174 |
+
|
| 175 |
if randomize_seed:
|
| 176 |
seed = random.randint(0, MAX_SEED)
|
| 177 |
+
|
| 178 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 179 |
+
|
| 180 |
global pipe
|
| 181 |
pipe = pipe.to(device)
|
| 182 |
+
|
| 183 |
+
# IP Adapter 로딩
|
| 184 |
+
try:
|
| 185 |
+
pipe.load_ip_adapter_faceid_plus(f'{ckpt_dir_faceid}/ipa-faceid-plus.bin', device=device)
|
| 186 |
+
scale = 0.8
|
| 187 |
+
pipe.set_face_fidelity_scale(scale)
|
| 188 |
+
except Exception as e:
|
| 189 |
+
print(f"Error loading IP adapter: {e}")
|
| 190 |
+
raise
|
| 191 |
|
| 192 |
+
# Face 정보 추출
|
| 193 |
face_info = face_info_generator.get_faceinfo_one_img(image)
|
| 194 |
+
if face_info is None:
|
| 195 |
+
raise gr.Error("No face detected in the image. Please provide an image with a clear face.")
|
| 196 |
+
|
| 197 |
face_bbox_square = face_bbox_to_square(face_info["bbox"])
|
| 198 |
crop_image = image.crop(face_bbox_square)
|
| 199 |
crop_image = crop_image.resize((336, 336))
|
| 200 |
crop_image = [crop_image]
|
| 201 |
+
|
| 202 |
face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
|
| 203 |
+
face_embeds = face_embeds.to(device, dtype=dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
+
# 이미지 생성
|
| 206 |
+
try:
|
| 207 |
+
image = pipe(
|
| 208 |
+
prompt=prompt,
|
| 209 |
+
negative_prompt=negative_prompt,
|
| 210 |
+
height=1024,
|
| 211 |
+
width=1024,
|
| 212 |
+
num_inference_steps=num_inference_steps,
|
| 213 |
+
guidance_scale=guidance_scale,
|
| 214 |
+
num_images_per_prompt=1,
|
| 215 |
+
generator=generator,
|
| 216 |
+
face_crop_image=crop_image,
|
| 217 |
+
face_insightface_embeds=face_embeds
|
| 218 |
+
).images[0]
|
| 219 |
+
except Exception as e:
|
| 220 |
+
print(f"Error during inference: {e}")
|
| 221 |
+
raise gr.Error(f"Failed to generate image: {str(e)}")
|
| 222 |
|
| 223 |
+
return image, seed
|
| 224 |
|
| 225 |
css = """
|
| 226 |
footer {
|
| 227 |
visibility: hidden;
|
| 228 |
}
|
| 229 |
+
.container {
|
| 230 |
+
max-width: 1200px;
|
| 231 |
+
margin: 0 auto;
|
| 232 |
+
padding: 20px;
|
| 233 |
+
}
|
| 234 |
"""
|
| 235 |
|
|
|
|
|
|
|
| 236 |
def load_description(fp):
|
| 237 |
+
if os.path.exists(fp):
|
| 238 |
+
with open(fp, 'r', encoding='utf-8') as f:
|
| 239 |
+
content = f.read()
|
| 240 |
+
return content
|
| 241 |
+
return ""
|
| 242 |
|
| 243 |
+
# Gradio Interface
|
| 244 |
with gr.Blocks(theme="soft", css=css) as Kolors:
|
|
|
|
| 245 |
gr.HTML(
|
| 246 |
"""
|
| 247 |
<div class='container' style='display:flex; justify-content:center; gap:12px;'>
|
|
|
|
| 253 |
<img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord badge">
|
| 254 |
</a>
|
| 255 |
</div>
|
| 256 |
+
<h1 style="text-align: center;">Kolors Face ID - AI Portrait Generator</h1>
|
| 257 |
+
<p style="text-align: center;">Upload a face photo and create stunning AI portraits with text prompts!</p>
|
| 258 |
+
"""
|
| 259 |
)
|
| 260 |
|
| 261 |
with gr.Row():
|
|
|
|
| 263 |
with gr.Row():
|
| 264 |
prompt = gr.Textbox(
|
| 265 |
label="Prompt",
|
| 266 |
+
placeholder="e.g., A professional portrait in business attire, studio lighting",
|
| 267 |
+
lines=3,
|
| 268 |
+
value="A professional portrait photo, high quality, detailed face"
|
| 269 |
)
|
| 270 |
with gr.Row():
|
| 271 |
+
image = gr.Image(
|
| 272 |
+
label="Upload Face Image",
|
| 273 |
+
type="pil",
|
| 274 |
+
height=400
|
| 275 |
+
)
|
| 276 |
with gr.Accordion("Advanced Settings", open=False):
|
| 277 |
negative_prompt = gr.Textbox(
|
| 278 |
label="Negative prompt",
|
| 279 |
+
placeholder="Things to avoid in the image",
|
| 280 |
+
value="low quality, blurry, distorted, disfigured",
|
| 281 |
visible=True,
|
| 282 |
)
|
| 283 |
seed = gr.Slider(
|
|
|
|
| 285 |
minimum=0,
|
| 286 |
maximum=MAX_SEED,
|
| 287 |
step=1,
|
| 288 |
+
value=66,
|
| 289 |
)
|
| 290 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 291 |
with gr.Row():
|
|
|
|
| 304 |
value=25,
|
| 305 |
)
|
| 306 |
with gr.Row():
|
| 307 |
+
button = gr.Button("🎨 Generate Portrait", elem_id="button", variant="primary", scale=1)
|
| 308 |
|
| 309 |
with gr.Column(elem_id="col-right"):
|
| 310 |
+
result = gr.Image(label="Generated Portrait", show_label=True)
|
| 311 |
+
seed_used = gr.Number(label="Seed Used", precision=0)
|
| 312 |
|
| 313 |
+
# 예제 추가
|
| 314 |
+
gr.Examples(
|
| 315 |
+
examples=[
|
| 316 |
+
["A cinematic portrait, dramatic lighting, professional photography", None],
|
| 317 |
+
["An oil painting portrait in Renaissance style, classical art", None],
|
| 318 |
+
["A cyberpunk character portrait, neon lights, futuristic", None],
|
| 319 |
+
],
|
| 320 |
+
inputs=[prompt, image],
|
| 321 |
+
)
|
| 322 |
|
| 323 |
button.click(
|
| 324 |
+
fn=infer,
|
| 325 |
+
inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
|
| 326 |
+
outputs=[result, seed_used]
|
| 327 |
)
|
| 328 |
|
| 329 |
+
if __name__ == "__main__":
|
| 330 |
+
Kolors.queue(max_size=10).launch(debug=True, share=False)
|