Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,10 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import numpy as np
|
| 3 |
import tensorflow as tf
|
| 4 |
-
|
| 5 |
-
from PIL import Image
|
| 6 |
import json
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Load the model
|
| 9 |
model = tf.keras.models.load_model("EuroSAT_model.h5")
|
|
@@ -11,38 +12,52 @@ model = tf.keras.models.load_model("EuroSAT_model.h5")
|
|
| 11 |
# Load class labels
|
| 12 |
with open("label_map.json", "r") as f:
|
| 13 |
class_labels = json.load(f)
|
| 14 |
-
|
| 15 |
-
# Reverse the class labels to get index to class name mapping
|
| 16 |
class_labels = {v: k for k, v in class_labels.items()}
|
| 17 |
|
| 18 |
-
# Function to preprocess
|
| 19 |
-
def
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
# Streamlit App
|
| 27 |
-
st.title("Satellite Image Classification")
|
| 28 |
|
| 29 |
-
st.write("Upload a satellite image, and
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
uploaded_file = st.file_uploader("Choose
|
| 33 |
|
| 34 |
if uploaded_file is not None:
|
| 35 |
-
#
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
| 43 |
predictions = model.predict(processed_image)
|
| 44 |
class_idx = np.argmax(predictions, axis=1)[0]
|
| 45 |
predicted_class = class_labels[class_idx]
|
| 46 |
-
|
| 47 |
-
# Show
|
| 48 |
-
st.write(f"Predicted Class: {predicted_class}")
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import numpy as np
|
| 3 |
import tensorflow as tf
|
| 4 |
+
import rasterio
|
|
|
|
| 5 |
import json
|
| 6 |
+
import tempfile
|
| 7 |
+
import os
|
| 8 |
|
| 9 |
# Load the model
|
| 10 |
model = tf.keras.models.load_model("EuroSAT_model.h5")
|
|
|
|
| 12 |
# Load class labels
|
| 13 |
with open("label_map.json", "r") as f:
|
| 14 |
class_labels = json.load(f)
|
|
|
|
|
|
|
| 15 |
class_labels = {v: k for k, v in class_labels.items()}
|
| 16 |
|
| 17 |
+
# Function to preprocess a .tif image and compute indices
|
| 18 |
+
def preprocess_tif(file_path, target_size=(224, 224)):
|
| 19 |
+
with rasterio.open(file_path) as src:
|
| 20 |
+
B3 = src.read(3).astype(np.float32) # Green
|
| 21 |
+
B4 = src.read(4).astype(np.float32) # Red
|
| 22 |
+
B5 = src.read(5).astype(np.float32) # NIR
|
| 23 |
+
B6 = src.read(6).astype(np.float32) # SWIR1
|
| 24 |
+
|
| 25 |
+
NDVI = (B5 - B4) / (B5 + B4 + 1e-5)
|
| 26 |
+
NDBI = (B6 - B5) / (B6 + B5 + 1e-5)
|
| 27 |
+
NDWI = (B3 - B5) / (B3 + B5 + 1e-5)
|
| 28 |
+
|
| 29 |
+
index_img = np.stack([NDBI, NDVI, NDWI], axis=-1)
|
| 30 |
+
index_img = np.nan_to_num(index_img)
|
| 31 |
+
index_img = tf.image.resize(index_img, target_size).numpy()
|
| 32 |
+
index_img = np.clip(index_img, -1, 1)
|
| 33 |
+
index_img = np.expand_dims(index_img, axis=0) # Add batch dimension
|
| 34 |
+
|
| 35 |
+
return index_img
|
| 36 |
|
| 37 |
# Streamlit App
|
| 38 |
+
st.title("Satellite Image Classification with Spectral Indices")
|
| 39 |
|
| 40 |
+
st.write("Upload a .tif satellite image. The model computes NDVI, NDBI, and NDWI, then predicts the class.")
|
| 41 |
|
| 42 |
+
# File uploader
|
| 43 |
+
uploaded_file = st.file_uploader("Choose a .tif image...", type=["tif", "tiff"])
|
| 44 |
|
| 45 |
if uploaded_file is not None:
|
| 46 |
+
# Save uploaded file to a temporary location
|
| 47 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".tif") as tmp:
|
| 48 |
+
tmp.write(uploaded_file.read())
|
| 49 |
+
tmp_path = tmp.name
|
| 50 |
+
|
| 51 |
+
# Preprocess image
|
| 52 |
+
processed_image = preprocess_tif(tmp_path)
|
| 53 |
+
|
| 54 |
+
# Predict
|
| 55 |
predictions = model.predict(processed_image)
|
| 56 |
class_idx = np.argmax(predictions, axis=1)[0]
|
| 57 |
predicted_class = class_labels[class_idx]
|
| 58 |
+
|
| 59 |
+
# Show results
|
| 60 |
+
st.write(f"Predicted Class: **{predicted_class}**")
|
| 61 |
+
|
| 62 |
+
# Cleanup temp file
|
| 63 |
+
os.remove(tmp_path)
|