Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import json
|
| 7 |
+
|
| 8 |
+
# Load the model
|
| 9 |
+
model = tf.keras.models.load_model("satellite_image_model.h5")
|
| 10 |
+
|
| 11 |
+
# Load class labels
|
| 12 |
+
with open("label_map.json", "r") as f:
|
| 13 |
+
class_labels = json.load(f)
|
| 14 |
+
|
| 15 |
+
# Reverse the class labels to get index to class name mapping
|
| 16 |
+
class_labels = {v: k for k, v in class_labels.items()}
|
| 17 |
+
|
| 18 |
+
# Function to preprocess the image
|
| 19 |
+
def preprocess_image(image, target_size=(224, 224)):
|
| 20 |
+
image = image.resize(target_size)
|
| 21 |
+
image = img_to_array(image)
|
| 22 |
+
image = np.expand_dims(image, axis=0)
|
| 23 |
+
image = image / 255.0 # Normalizing
|
| 24 |
+
return image
|
| 25 |
+
|
| 26 |
+
# Streamlit App
|
| 27 |
+
st.title("Satellite Image Classification")
|
| 28 |
+
|
| 29 |
+
st.write("Upload a satellite image, and the model will predict its class.")
|
| 30 |
+
|
| 31 |
+
# Image uploader
|
| 32 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
| 33 |
+
|
| 34 |
+
if uploaded_file is not None:
|
| 35 |
+
# Display the uploaded image
|
| 36 |
+
image = Image.open(uploaded_file)
|
| 37 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 38 |
+
|
| 39 |
+
# Preprocess the image
|
| 40 |
+
processed_image = preprocess_image(image)
|
| 41 |
+
|
| 42 |
+
# Make prediction
|
| 43 |
+
predictions = model.predict(processed_image)
|
| 44 |
+
class_idx = np.argmax(predictions, axis=1)[0]
|
| 45 |
+
predicted_class = class_labels[class_idx]
|
| 46 |
+
|
| 47 |
+
# Show the predicted class
|
| 48 |
+
st.write(f"Predicted Class: {predicted_class}")
|